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ABSTRACT 

We fix a pr ime p. In this  paper,  s ta r t ing  from a given Galois represen- 

t a t ion  ~o having  values in p-adic points  of a classical group G, we s t udy  

t h e  adjoint  act ion of  ~ on the  p-adic Lie a lgebra  of  the  derived group 

of G. We call th is  new Galois representa t ion  the  adjoint  representa t ion  

Ad(~o) of ~o. Under  a sui table p-ordinaxity condit ion (and ramificat ion 

condit ions outs ide p), we define, following Greenberg,  the  Selmer group 

Sel(Ad(~o))/L for each n u m b e r  field L. We scrut inize the  behavior  of 

Sel(Ad(~o))/E ~ as an  Iwasawa module  for a fixed Zp-extension Ec~/E 
of a n u m b e r  field E and  deduce an  exact  control theorem.  A key in- 

gredient  of  the  proof  is the  i somorphism between the  Pont ryag in  dual  of 

the  Selmer group and  the  module  of K/ihler differentials of  the  universal  

near ly  ord inary  deformat ion  ring of ~. W h e n  G = GL(2),  ~o is a modula r  

Galois representa t ion  and  the  base field E is total ly real, from a recent  

resul t  of  Fuj iwara identifying the  deformat ion  r ing wi th  an  appropr ia te  

p-adic Hecke algebra,  we conclude some fine results  on the  s t ruc tu re  of  

the  Selmer groups,  including tors ion-proper ty  and  an exact  limit formula  

at  s = 0 of the  character is t ic  power series, after removing the  trivial zero. 
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1. I n t r o d u c t i o n  

Let  O be a discrete  va lua t ion  r ing (with max ima l  ideal  ra = too)  finite fiat  over 

Zp for a p r ime  p. Let  G C GL(n)  be ei ther  GL(n)/o or a spl i t  s imi l i tude  group 

defined over O by a symmet r i c  or symplect ic  form. Let  J be a local  comple te  

noe the r i an  in tegra l  domain  over O shar ing the  same residue field F wi th  O. S ta r t -  

ing from a cont inuous Galois  representa t ion  ~: G a l ( Q / E )  -~ G(J )  for a number  

field E ,  we let  the  Galois  group act  on the  Lie a lgebra  s / j  of the  der ived group S 

of G v ia  ad jo in t  act ion,  ge t t ing  the  adjoint  representa t ion  A d s ( ~ ) :  G a l ( Q / E )  -+ 
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GL(s). Suppose that  ~ factors through ~ = Gal(F(P,°°)/E) for the maximal 

extension F(P,°°)/F unramified outside p and oc, where F I E  is a finite Galois 

extension F I E  with p { IF : El. Further suppose that ~o is nearly ordinary at p in 

the following sense: ~ restricted to a decomposition group Dp at a prime PIP has 

values in a (proper) split parabolic subgroup Pp of G. Thus ~o restricted to Dp 

leaves stable a flag ~-: 0 -- Vo(~O) C VI(~O) C . . .  C Vmp (~o) = Y(~o) of the space 

V(~o) of ~. We write 5j,p for the representation of Dp on Vj(~o)/Vj_l(~O). The 

Lie algebra np C s of the unipotent radical of Pp N S is stable under Dp. Now we 

can define, following Greenberg, the adjoint Selmer group Sel(Ads(~)G ¢) /L  for 

any Artin representation ¢: A = Gal(F/E)  -~ GL(V) = GL,~(O) and a subfield 
L c F (p'°°) by 

Sel(Ads(~o) G ¢) /L = Ker(HI(~L, (8 Go V)*) 

- II  gl(*p, (8Go V)*/(.p Go V)*)), 
Pip 

where ~L = Gal(F(P'°°)/L), Ip is the inertia subgroup at PIP in ~L and M* for a 

J-module M is given by M Gj 5" for the Pontryagin dual 5" of 5. Even though we 

have restricted ourselves to either GL(n) or similitude groups, our result actually 

covers any central extension r : 0 -~ G, because we have Ads(~o) = Ad#(~5) for 

any Galois representation ~3: O --+ 0(5) with ~ = r o ~. In particular, our result 

is valid for metaplectic covers of GSp and spinor groups GSpin. 

In this paper, we study the Iwasawa theory of Sel(Ads (~o) G¢)/Eoo for a fully p- 

ramified Zp-extension Eoo/E. We view the Pontryagin dual Sel* (Ads (~)G¢)/Eoo 

of Sel(Ads(~o) G ¢)/Eoo as a module over the Iwasawa algebra J[[F]] for F = 

Gal(Eoo/E) = (7) and study its module structure over J[[F]] = $[[T]] (T = 7 - 1 ) .  

Since the group G is split reductive over O, the conjugacy class of the split 
parabolic subgroup Pp is represented by a unique s t a n d a r d  parabolic subgroup 

P~ containing a fixed (split) Borel subgroup B of G. The Borel subgroup B is 

determined by a unique (maximal) flag ~" of subspaces of V(~). Any standard 

parabolic subgroup is a stabilizer of a unique flag whose subdivision gives rise 
" o - - 1  to ~ .  Therefore, if Pp -- gpP~gp , then the flag gp~" is a subdivision of the 

flag Vo(9) C Vl(~O) C . . .  C Vmp (9). The Selmer group defined above depends 

on the choice of Pp (and hence on the choice of the flag). For a given 9, there 

could be several choices of Pp. The choice of minimal Pp would be a canonical 

one, although we do not care much in this paper which choice we make (except 

in our conjectures for which we make the hypothesis on ~ that Pp is a Borel 

subgroup). We may regard (~)j 5j,p as a representation of Dp into Mp (O) for the 

Levi-quotient Mp = Pp/Np, where Np is the unipotent radical of Pp. 
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In the above definition of the Selmer group, we have assumed that  the ramifi- 

cation in T outside p is rather limited to a finite extension FIE with p { [F : El, 

basically covering potentially unramified (outside p) cases. Thus we do not touch 

in this paper the case where some primes q { p semi-stably ramify in the repre- 

sentation ~. When G is bigger than GL(2), the primes q ramify semi-stably in 

many different ways. Different types of ramification might require separate treat- 

ment. Since this paper inaugurates a general treatment of adjoint Selmer groups, 

we decided, at least for this paper, to avoid further complications coming from 

allowing infinite ramification outside p. We hope to come back to more general 

cases of ramification, if one can find anything new and interesting in more general 

cases. 

If ~ is the Galois representation of a pure motive M defined over E, we can 

define a motive Ads(M) to which Ads(~) is associated. Its L-function is expected 

to satisfy the functional equation of the form s ~ 1-s .  If Ad(M)®¢ is p-ordinary 

and is critical at s -- 0 and 1, then F is totally real and Pp is a Borel subgroup. 

Suppose that  lY/is regular (that is, all Hodge components of M have dimension 

_< 1). There is a good reason to believe that L(1, Ads(M) ®¢) ¢ 0, which is true 

if ~o is associated to a cuspidal automorphic representation of GL(n)/F. Thus 

if (i) Ad(M) ® ¢ is critical, (ii) Pp is a Borel subgroup and (iii) M is regular, 

the Selmer group Sel(Ad(M) ® ¢)/E should be finite, and we expect that  the 

Pontryagin dual Sel*(Ads(T) ® ¢)/so~ is a torsion O[[T]]-module of finite type, 

because its specialization at an arithmetic point tends to give Sel* (Ad(M) ® ¢) 

up to J-torsion error (see (1) and (2) below). Even if F does have some complex 

places, we believe (the Pontryagin dual of) the Selmer group to be torsion as 

long as Pp is a Borel subgroup and M is regular (see [H99a] Section 5). More 

generally, if Ads(~) is arithmetic (that is, Spec(J) has densely populated points 

P such that  A d ( ~ ) m o d P  is associated to a critical pure motive) and Pp is a 

Borel subgroup (for all PIP), we expect that Sel*(Ads(qa) ® ¢)/E~ is a torsion 
J[[T]]-module of finite type. 

Heuristically, if there exists a p-adic L-function Lp(s, Ads(M) ® ¢), the order 

of zero at s = 0 should be equal to the number of linear Euler p-factors vanishing 

at s = 0, because we expect to have L(1, Ad(M) ® ¢) ~ 0 as described above. 

The number of such Euler factors can be computed as follows: Let Sp be the set 

of primes of F over PIP in E, on which A acts by conjugation. We consider the 

formal A-module F[Sp] generated by elements of Sp over F. Let ep(¢) be the 
multiplicity of ¢ = ¢ mod m in F[Sp]. Assuming that M is crystalline at p and 

counting the multiplicity of 1 in the eigenvalues of the crystalline Frobenius, we 
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conclude that the number of such linear Euler p-factors of L(s, Ad(M)®~) should 

be ep (¢)rp, where rp is the split rank of the center of the Levi-subgroup of Pp D S. 

Thus the number of such linear Euler p-factors should be e -- ~-~plp ep(~b)rp (see 

4.3). 
Under not so restrictive conditions we will describe later in this section, we 

shall prove the following assertions (see Section 4, in particular Theorem 4.4): 

(1) We have, if e = 0, 

Sel* (Ads(p) ® ¢)/E~ 
Sel*(Ads(~O) ® ¢)/E; 

T Sel*(Ads(~) @ ¢)/E~ 

(2) In general, we have the following exact sequence: 

Sel*(Ads(qo) ® ¢)/Eoo __+ Sel*(Ads(~) ® ¢)/E --+ 0. 
.ll e AL~ TSel*(Ads(qo) ® ¢)/E~ 

We conjecture thatL1 is injective (Conjecture 4.2) and thatSel* (Ads(p)N~b) /~  

is pseudo-isomorphic to a product of je  and a torsion JI[[T]]-module M without 

trivial zero at T = 0, as long as Pp is a BoreI subgroup and Ads(~o) is arithmetic 

([H97a]). This arithmeticity essentially forces qo to have values in GSp(n) or 

GO(n) if n > 2 (see Example 2.7 and Example 2.8). 

A sufficient condition to have control with finite error, similar to (1), has 

been given by Ochiai for general crystalline Galois representations without triv- 

ial zero (that is, the crystalline Frobenius does not have the eigenvalue 1; see 

[O]) by a different method. For example, one starts with a 2-dimensional rep- 

resentation ~o: ¢i --+ GL2(O) and makes a symmetric power Symk~: ~5 --+ 
GLk+I (O). Ochiai's result gives a control theorem (with finite bounded error) for 
Sel(det(~)J Symk(qo)) for odd k, when qo is associated to a critical 2-dimensional 

pure motive ordinary at p. On the other hand, since AdsL(k+l)(Symk(~)) ~- 
~j=lk ~oj for ~j = det(~o)-J Sym2J(~o), our result in essence takes care of sym- 

metric even powers of qo (see Examples 4.1 and 6.2). This work of Ochiai also 

deals with the Selmer groups of Bloch-Kato for critical crystalline motives M 

satisfying the Panchishkin condition. 

Suppose G = GL(2), F is totally real and Spec(J) is an irreducible closed 

subscheme of Spec(h TM) for the universal nearly ordinary Hecke algebra h T M  
for GL(2)/F. Then, under suitable assumptions, the Hecke algebra represents 

the (nearly ordinary) deformation functor deforming the representation P F  ----- 

~omodm of DR. This follows from a recent work of Fujiwara generalizing an 

earlier work of Wiles-Taylor and Diamond for F = Q (see Section 5). From this, 

we can conclude (Theorems 6.1 and 6.3), under suitable assumptions, that  
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(I) Sel*(AdsL(2)(~0) ® ~))/E is a torsion .~-module of finite type and has no 

pseudo-null J-module non-null; 

(II) The map el is injective; 

(III) Sel*(AdsL(2)(~) ® ¢)/E~ is a torsion S[[T]]-module of finite type; 

(IV) If e = 0 and 5 is a regular local ring, then Sel*(AdsL(2)(~) ® ¢)/Eoo has no 

pseudo-null S[[T]]-module non-null. 

Let O be the integer ring of F,  and we put Op = O ®~ Zp. Then we write 

I0 C O~ for the subgroup made of universal norms from Fo~/F (F~ = E~F). 
Then O~/ I0  ~ F s~ for the set SF of all primes of F over p. We number elements 

in SF as P l , . . . ,  Ps for s = ]SF[. We write Cl(p ~ )  for the Galois group of maximal 

abelian extension of F unramified outside p and co. Then h T M  is an algebra 

over the Iwasawa algebra O[[G]] for G = Cl(p °°) × 0 7.  Therefore, if we write 

O[[G]] = O[[Cl(p ~ )  × I0]][[T1,... ,Ts]] for parameters Tj with s = ISFI, we can 

think of the jacobian determinant 

(0T(pi)) 
J = det \ OTj 

in h T M  for Hecke operators T(pi). If Spec(S) c Spec(hn'°rd), the existence of 

the conjectural pseudo-isomorphism of the Selmer group into 5 ~ × M as above is 

equivalent to the non-vanishing of the image J of J in J. If $ is a regular local 

ring, assuming that J # 0, we shall show that 

(V) q2(T) = Te~(T) with ¢(0) = J~7 6 5 up to units 

for the characteristic element 7/6 5 of Sel*(AdsL(2)(~o) ® ¢)/E and for the char- 

acteristic power series ~ (T)  6 J[[T]] of Sel*(AdsL(2)(~o) ® ¢)/E~ (Theorem 6.3). 

We also prove the non-vanishing: J # 0 for the cyclotomic Zfextens ion  F~/F  if 

Spec(S) is sufficiently large and contains a point P whose Galois representation 

~omodP is of multiplicative type at all but one p-adic place (Proposition 7.1). 

To prove the above assertions, we have exploited an idea of Mazur, that is, 

the identification of the Selmer group with the module of K~ihler differentials of 

the global universal deformation space of PL = ~]~L modm~ over the local one 

(Theorem 2.3), where m~ is the maximal ideal of S. Here we call a representation 

P: ~L --+ G(A) for an Artinian local O-algebra A with residue field F a deforma- 

tion of PL if p -= PL mod mA for the maximal ideal mA of A. Thus we need to 

assume the representability of the deformation functors, which follows from the 

following conditions: 

(ZF) For any deformation p: ~F -'+ G(A) c GLn(A) of PF, if xp = px for 

x 6 GL~(A), then x is scalar; 
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(Zp,F) For any deformation 5: Ip -+ GLm(A) (for all PIP) of ~j,p = 5j,p modred, 
if x5 -- 5x for x E GLm(A), x is scalar, where Ip is the inertia subgroup 

of J~F; 

(RegF) H°(Dp, s / ( s  N Pp)) ---- 0 for the Lie-algebra 7~p of Pp for all prime PIP- 

The conditions (ZF) and (Zp,F) follows from the absolute irreducibility of the 
corresponding F-residual representation, but there are many examples of residual 

representations satisfying these conditions which are not absolutely irreducible. 

Similarly, (RegF) follows from HOmDp (~i,~, ~j,p) = 0 for all p and i ~ j .  We need 

to assume one more technical assumption for the validity of the assertions (1) 
and (2): 

(EP) 
mp 

p~ 2n[F:  E] 1"-[ YI  dim~j,p. 
p j = l  

At this moment, for the validity of Fujiwara's result for GL(2)/F quoted above, 
we need to assume the following conditions: 

(AIk) 

(LD) 

(NR) 

Pk: ~k -+ GL2(F) is absolutely irreducible for k = F(~/(-1)(P-1)/2p); 

F is linearly disjoint from Q(#p) over Q, and Op is p-torsion-free; 

Fp/Qp is unramified if f is fiat at p. 

Thus, for the assertions stated above concerning Spec(5) C Spec(h~'°rd), we need 

to assume (AIk), (LD) and (NR) (or simply the universality of h'~°rd: (univ) in 
5.2). The condition (AIk) follows from the absolute irreducibility of AdsL(2)(PF)- 
Since S C G is simple, Ads(fiR) is absolutely irreducible for a representation 
f :  ~ F  ~ G(F) with sufficiently large image. 

Since Fujiwara's formulation of the method of Taylor-Wiles is formal, we ex- 
pect its generalizations to more general groups G in near future (some cases have 
already been dealt with by Harris-Taylor [HAT]). Once we have the identification 
of the (nearly ordinary) Hecke algebra of the Langlands dual G L of G with an 

appropriate global p-adic deformation ring of PF, we should be able to get state- 
ments similar to I-V (from (1) (2)) for more general G rather than just GL(2)/F. 
This is the reason why we have treated general split classical groups G. 

When F = Q, the universal ordinary Hecke algebra h °rd is finite flat over 

O[[W]] for the weight variable W, and h T M  = h°~d[[T]]. When J is an irreducible 

component of Spec(h°~d), we constructed in [Hg0] a p-adic L-function Lp(W, T) E 
T,~[[T]] associated to AdsL(2)(~p) and the Zp-extension Qc¢. Hence, we have a 
main conjecture asserting the identity: Lp(W,T) = ~(T) for ~(T)  as above. 
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Greenberg and Tilouine have shown the congruence 

~---P (0, 0) = J~ mod P 

if an arithmetic prime P of 5 is associated to an elliptic curve with multiplicative 

reduction at p. Under some (standard) conjectures on Siegel modular varieties 

with some addtional hypothses, Urban has shown the divisibility: Lplg2; so, the 

main conjecture: g2 = Lp follows from the assertion (V) and the non-vanishing: 

J ~ 0 m o d P  ([BDGP]) in this (elliptic curve) case (see [HTU] and [V] for more 

details). After the solution of this two-variable main conjecture, the one-variable 

version for an elliptic Hecke eigen cusp form f automatically follows, because 

s ~, Lp(w, 7 8 -  I) for a suitable specialization W ~ w E O gives the canonical (or 

genu ine  in the terminolgy of [H97b]) p-adic L-function Lp(s, Ad(f))  of Ad(f) .  

This canonical p-adic L-function differs by a constant ~/f from the cyclotomic 

p-adic L-function for Ad(f)  constructed by other authors, if f has non-trivial 

congruence modulo p with other elliptic cusp forms. Here ~/f is the order of 

the congruence module of f .  There is no doubt that the construction in [H90] 

generalizes to the Hilbert modular case. 

In Section 2, we describe various Selmer groups and study relations among 

them. In Section 3, we study base-change of the deformation rings, and in Sec- 

tion 4, we prove the assertions (1) and (2). In Section 5, we recall basic facts 

from the theory of Hecke algebras for GL(2) and deduce the universality of the 
Hecke algebra from the result of Fujiwara [~].  The assertions I-V will then be 

proven in Section 6. In Section 7, we prove the non-vanishing: J ~ 0 in almost 

multiplicative reduction case. At the end, we shall give corrections to the result 

in [H96a], although we do not use in this paper the assertion mis-stated there. 

This paper supersedes my earlier preprints [H97a] and [H97h]. The principal 

idea of this paper is similar to the idea described in [H97a] for F = Q and 

G = GL(2) (which is not for publication, except for some parts reproduced in 

[H99b] Chapter 5 and is slightly different from the method of [H96a]). The 

idea has been fully developed in this paper to include classical split groups G. 

After having written [H97b], I realized that the argument works well for general 

classical groups G and symmertic even powers ~j, and this paper is the outcome 

of the endeavor. 
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2. Var ious  ad jo in t  S e l m e r  g roups  

2.1. DEFINITION. We begin with the definition by Greenberg of the Selmer 

groups we like to study. Let FIE be a Galois extension of number field inside a 

fixed algebraic closure Q of Q. We fix a prime p { IF : E]. We write F(P,°°)/F 
for the maximal extension of F unramified outside {p, oc}. Let J be a p-adic 

pro-artinian local O-algebra with finite residue field F, and we take a Galois 

representation ~o: ~5 = Gal(F(P,°°)/E) -+ GL,~(J). We write Y = Y(~o) for the 

representation space of ~o, which is a J-free module of rank n. Let SE be the set 

of prime factors o f p  in E. For each p E SE, we fix a decomposition subgroup Dp 

in ~5. We assume that  we are given a Dp-stable filtration: 

( f i l . )  o = v( )o,p c c c . . . c  = 

where we assume that  V(~o)/V(~)j,p for all j = 1 , . . . ,  mp - 1 are all J-free. The 

stabilizer of this filtration gives rise to a conjugacy class of a parabolic subgroup 

Pp of GL(n). We call the representation ~o nearly ordinary of type 2" = {Pp}p 

and call .~ the nearly ordinarity datum for ~o. When all Pp are Borel subgroups, 

we call ~ (nearly ordinary) of Borel type. We write ~j,~,p for the representation 

of Dp on V(~o)j,p/V(~o)j_l,p. If ~o is of Borel type, aj,~,p is a character. 

We fix one step 0 <_ j <_ m. We write (f~- for the representation of Dp 

on V(~o)j,p = V(5~-). We call such a datum a local  S e l me r  d a t u m  ,5 = 

{V(a~,p)}pes. Then we consider the Pontryagin dual J-module 

J* = Homxp(J, Qp/Zp). 

For each J-module X, we define X* = X ®~ J* and let ~5 or its subgroup act on 

X* through the left factor if X has an action of the subgroup. We consider the 

Galois cohomology group H1(~5, V(~)*), which is a discrete J-torsion module. 

Then we define, writing ~ L  = Gal(F(P'm)/L) for each intermediate extension 

F(P'°°)/L/E, the S e l m e r  g roup  with respect to ,5 by 

(Sel) Sels(~o)/L = Ker(HI(t)L,  V(~o)*) --+ H HI(Ip ' V(5+)*))' 
pESL 

where V(5 +) = V(~op)/V(5~,p), Ip is the inertia subgroup of the decomposition 

group Dp C -~L and the map is the restriction composed with the projection: 
+ * V(T)* --+ V(5~o,p) • We can define the s t r ic t  Sehner group Sels,st(~o)/L replacing 

Ip in the above definition by Dp. 
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Example 2.1: Let F/Q be a quadratic extension (so E = Q) and X : Gal(F/Q) ~- 

{+1} be the unique non-trivial character. We may regard X as having values in 

Z~ for p > 2. We take V(5 +) to be the full space V(X). Then Sel(x)/Q is 

isomorphic to the p-part C1F, p of the strict class group of F.  This can be proven 

as follows: By Inflation-restriction sequence, we have 

H1(¢~, V(X)*) ~- HI(~, V(X)*)[X] '~ nome~ (~, V(X)*), 

where "IX]" indicates the x-eigenspace. Then the above isomorphism induces 

Sel(x ) ~ Hom(C1F, p, V(X)*) ~- C1F,p. 

The isomorphism a follows from class field theory, and the last isomorphism 

holds because C1F,p[id] is trivial (that is, Z is a PID!). More generally, taking 

a finite cyclic extension F/Q of degree n with p ~ n and let X: O ~ #,~ C O × 

be a character such that F = L Ker(x) for L = F (p,°~). Then for the choice: 

V(5 +) = V(X), the Selmer group Sel(x)/Q is isomorphic to the x-eigenspace of 

C1f,p (~zpO. 

Example 2.2: Let E = Q. Let E/Q be an elliptic curve with ordinary good 

reduction at p > 2. We suppose that C acquires everywhere good reduction for 

a finite extension F with p ~ [F : Q]. The Tare module Tp($) has a natural 

filtration: 
0 -+ Tp(E c) --+ Tp(£) -~ Tp(C ee) -+ O. 

Here 8c (resp. E a)  is the connected component (resp. the maximal ~tale quo- 

tient) of the p-divisible group of C. We take V(~) to be Tp(~) and V(5 +) to be 

Tp(Eet). We write Set(E)/L for Sel(~)/L for this ~. Then by Kummer theory for 

C, we have an exact sequence: 

0 ~ ~(Q) QZ Qp/Zp ~ Sel(E)/Q -+ III(E)/Q -+ 0. 

Here III(C)/Q is the p-primary part of the Tate-Shafarevich group for E over Q. 

We refer details for this type of Selmer groups to Greenberg's exposition [Grl] 

Section 2. 

Example 2.3: Let f E Sk(Fo(C),x) be a Hecke eigenform for a "Neben" Dirich- 

let character X of conductor C. Write fiT(n) = A(T(n))f for a system of Hecke 

eigenvalues A(T(n)), and let Q(A) be the number field generated by A(T(n)) for 

all n. Take a prime ideal pip of Q(A), and let O be the p-adic integer ring. Then 

we have a Galois representation q0: O --+ GL2(O) associated to A characterized 
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by the fact: Tr(~o(Frobl)) = A(T(t)) for all primes / { Cp. We further suppose 
that A(T(p)) E O x . Then V(~o) has a natural filtration: 

o - ,  o 

stable under Dp (cf. [MW] and IT±]). Here ranko Y ( ~ )  = 1. We suppose that  
the order of X is prime to p > 2. Then we take E = Q and F to be the cyclic exten- 

sion of Q such that :~ : Gal(F/Q) ~ Im(x) for the Galois character ~ associated 
to X by class field theory. We can think of Sel(~o)/Q as in the previous example, 
but  here we look into Sel(Ad(~o))/Q. We let O act on M2(O) = Endo(Y(~o)) by 
conjugation. Then the subspace V(Ad(~o)) C M2(O) made of trace zero matrices 
is stable under the action. In this way, we get a three dimentional representation 
Ad(~o). The one dimensional subspace 

W =  { ¢ E  Endo(V(~))  I T r ( ¢ ) = ¢ ( V ( 5 ~ - ) ) = 0 }  ~ { ( 0  * ) }  0 0 C Y(Ad(~)) 

is then stable under Dp. We define the Selmer group Sel(Ad(~o))/Q taking 
+ V(~Ad(~),p) to be V(Ad(~))/W. This Selmer group has been studied in depth 

by Wiles in [W], and Wiles' work combined with an earlier result of mine yields: 

F(1, Ad(A))L(1, Ad(A)) -1 
I Sel(Ad(~))/QI = fl(+, A; A)f l ( - ,  A; A) p " 

Here A = Q(A) N O is the discrete valuation ring of Q(A) (induced by (.9), 
the i -per iods  f~(±, A; A) are the normalized -l--periods of f with respect to 
A, and L(s, Ad(A)) = L(s, Ad(~o)) is the adjoint L-function of A with r-factor 

F(s, Ad(A)). We refer to [H99b] Chapter V Section 3, [H96b] Section 2.9-10 and 

[DHI] the details of these periods and the L-function. 

Example 2.4: We can think of a more general setting than the above examples. 
Suppose that F = Q, J -- Zp and that ~o is the etale realization of a rank n pure 
motive M/Q crystalline at p. We suppose that M is critical. Thus there .is the 

middle term of the Hodge filtration .T-(M) C HDR(M). We then assume that 
V(~-)  is sent onto ~ - ( M )  by the p-adic comparison isomorphism. If L(0, M) 

L(O,M)c-~ (M) 
0, we expect that I Sel(~o) l is finite and is related to c+(M ) Ip 1, where c + (M) 

is the period normalized with respect to V(~p-) and Y - ( M )  (see [H96b] Chapter 

3). Under the notation of Example 2.3, V(~0)®zpQp is the p-adic ~tale realization 
of a rank two motive M of Hodge weight ( k - l ,  0) and (0, k -1 ) .  We can then split 
M ® M v = Ad(M) $ 1  for the rank 3 adjoint motive Ad(M),  where M v is the 

dual of M. Then the subspace W in Example 2.3 corresponds to JC+(Ad(M)) = 
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7"- (Ad(M) (1)) under the p-adic comparison isomorphism (see Example 2.7 and 

[H96b] Section 3.2). Then c + (Ad(M)(1)) = ~(+ ,  A; A ) ~ ( - ,  A; A) up to elements 

in Q(A) × (and a power of (2~ri) to cancel the (2~ri) from the 1.-factor). The 

~-periods are normalized so that c+(Ad(M)(1)) is a p-adic unit. 

2.2. CHARACTER TWISTS. Let E ~ / E  be a Zp-extension with F = Gal(E~/E) 
==- Zp. We have the tautological character ~ : 1. ~ Zp[[F]] × for the Iwasawa 

algebra Zp[[F]]. Fix a generator 7 e 1.. Then we can identify 5[[1"]] with a power 

series ring J[[T]] so that ~(7) = 1 + T. We regard t¢ as a character of q5 and then 

consider ~ ® n: Gal(F(P'~)/E) ~ GLn(5[[1.]]). We want to relate Sel(~ ® ~)/E 
with respect to {V((f~-®to)}p and Sel(~)/E~ with respect to {V(5~-)}p. As proved 

in [H96a] Section 3.1, we have 

PROPOSITION 2.1: We have Sel(~ ® I~)/E TM Sel(~)/E . 

Thus we may consider 5[[1"]] as the coefficient ring of Sel(~ ® a)/E, and Green- 

berg has conjectured that Sel*(~ ® a)/E is a torsion module over its coefficient 

ring .~[[1.]] if the associated p-adic L-function does not vanish ([Gr] Conjecture 

4.1). 

Example 2.5: We keep the notation of Example 2.1. Thus X is a character 

inducing Gal(F/Q) ~- #,~ C (9 ×. Let E ~  = Q~ be the cyclotomic Z:extension.  

We suppose that X is an odd character. We write ~ : 1. = Gal (Q~/Q)  ~-~ 

(9[[FI] for the tautological character. We then regard Xt~ as a character of 

having values in (9[[r]] × Then taking V(5.+) to be the full space we 

have Sel(x~)/Q ~ Sel(x)/Q . The Pontryagin dual Sel*(X)/Q~ is the classical 

Iwasawa module studied by Iwasawa (see Introduction of [Grl]). 

Example 2.6: We keep the notation in Example 2.2. The study of the Selmer 

groups Sel(E)/Q~ (and Sel(£)/Eo~) was initiated by Mazur (see [Grl]). In partic- 

ular, if E is modular (that is now known to be true for almost all rational elliptic 

curves by Wiles and others), Mazur constructed a p-adic L-function of £/Q (see, 

for example, [H93] Chapter 6), and he conjectured that the characteristic power 

series of Sel(E)/Q~ is given by the p-adic L-function ([Grl] Conjecture 1.13). 

2.3. ADJOINT GALOIS REPRESENTATION. We now let ~ act on Mn(5) by 

conjugation: x ~, ~(a)x~(a) -1. The trace zero subspace si is stable under 

this action. This new Galois module of dimension n 2 -- 1 is called the adjoint 

representation of ~ and written as Ad(~). Thus 

V = V(Ad(cp))= {T  E End.~(V(cp)) I T r ( T ) = 0 } .  
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This space has a three step filtration: 0 C V + C V~ C V given by 

(+) V+(Ad(~)) = {T e Y(Ad(~)) I T ( Y ( ~ ) j , p ) )  C Y(~o)j_l,p for all j } ,  

( - )  Vp-(Ad(~)) = {T e Y(Ad(~)) I T(Y(~)j,~o,,) C Y(~)j,~,, for all j } .  

From this, we can think of four different Selmer groups for each p depending on 

S, which should correspond different p-adic L-functions. We simply write 

Sel0(Ad(~)), Sel(Ad(~)), Sel_(Ad(~)), or Self~tl(Ad(~)) 

according as S = 0, V+(Ad(~)), Vp-(Ad(~)) or Y(Ad(~)). Then we have the 

associated filtration of the full Selmer group: 

Sel0(Ad(qo)) C Sel(hd(~)) C Sel_(Ad(~o)) C Self~u(Ad(~)). 

Among these Selmer groups, Sel(Ad(~)) associated to V+(Ad(~)) is considered 

to be standard (generalizing the Selmer group in Example 2.3) and should be 

directly related to the normalized p-adic L-function described in [H96b] 4.3 (see 

the following example)• 

E x a m p l e  2.7: We begin with a regular and pure motive M of rank n (with 

coefficients in Q) defined over E = Q. By the regularity, its Hodge numbers 

(p i ,q i )  for i = 1 , 2 , . . . , n  satisfies Pl < P2 < "'" < Pn. We consider the tensor 
product M ® M v and decompose it as M ® M v = 1 @ Ad(M). Then Ad(M) 

and M ® M v are motives of weight 0; so, we can write down its Hodge numbers 

in the following matrix form: 

I 0 P2 - Pl  • • • Pn - Pl 
Pl  - P2 0 "'" Pn -- P2 

• o • .  

Pl Pn P2 - P ,  "'" 0 

Thus Ad(M) is critical at 0 and 1 if complex conjugation acts by the scalar 

multiplication -1  on H°'°(Ad(M)), and the middle term of Hodge filtration 

9 v -  Ad(M) = P ( A d ( M )  C H D R ( A d ( M ) )  corresponds to the upper triangular 

part of the above matrix, and ~+  Ad(M) = ~-1 Ad(M) corresponds to the upper 

nilpotent part of the matrix• When we twist Ad(M) by an Artin motive M(¢)  

of rank m with Galois representation ¢ of A = Gal(F/Q) for a totally real field 
F,  the situation does not change. In other words, Ad(M) ® ¢ and Ad(M) are 

critical at 0 and 1 at the same time, and 9 r+  (Ad(M)®¢) = ($-+ Ad(M))@¢. We 

consider the p-adic Galois representation ~o on the p-adic ~tale realization H p ( M ) .  
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Since Ad(~) is self dual, L(1, Ad(~ )®¢)  ~ 0 at least conjecturally, because s = 1 

is the abscissa of convergence of L(s, Ad(~) ®¢) .  Since the conjectural functional 

equation is of the form s +-~ 1 - s, we should have L(0, Ad(~) ® ¢) ~ 0. We now 

suppose 

(1) ~ - -  ~ m o d p  is absolutely irreducible over F; 

(2) ~ restricted to Dp is isomorphic to an upper triangular representation with 

diagonal characters 51, 52 , . . . ,  (~ from the top left corner; 

(3) ~j = 5j m o d p  (j = 1, 2 , . . . ,  n) are all distinct on the inertia subgroup at p 

over F; 

(4) FB[SF] and ¢, which is ¢ modulo the maximal ideal, are disjoint as A- 

modules, 

where SF is the set of primes over p in F and A acts on the space of forraal 

linear combination Fp[SF] through its action on SF. The condition (2) asserts 

that  the parabolic subgroup Pp is the standard Borel subgroup. This is necessary 

to have the unipotent radical n C V(Ad(~)) correspond to ~ - ( A d ( M ) ( 1 ) )  = 

$'+ (Ad(M))  by the comparison isomorphism. Note that  n - 1  times the dimension 

of ¢-isotypic component of Fp [SF] is equal to the number of linear p-Euler factor 

of L(s, Ad(~) ® ¢) which vanishes at s .= 0. Thus (4) implies no trivial zero 

occurs at s = 0. Thus the Selmer group Sel (Ad(M)®¢)/Q should be finite. More 

generally if ~: ~5 -~ GL,~(~) specializes to the Galois representation associated 

to a motive M as above, the p-adic L-function should specialize to the order of 

Sel(Ad(M) ® ¢) /~,  and hence Sel*(Ad(~) ® ¢)/Q has to be a torsion J-module 

of finite type. 

We now show that  the motive Ad(M) is critical only when n = 2. Since 

complex conjugation c (Frobenius at cx~) reverses the Hodge filtration, we may 

assume that  ~(c) represents the longest element of the Weyl group of the maximal 

split torus of GL(n).  Then the multiplicity of the eigenvalue - 1  of its adjoint 

action on the Lie algebra t of T is equal to [2]" This number has to be equal to 

n - 1 for Ad(M) to be critical. This happens only when n = 2. 

As already remarked above, we cannot get a critical adjoint motive from GL(n) 

Galois representations if n > 2. To get something critical, we generalize a bit the 

definition of Ad(~) and its Selmer group to general classical groups (when p > 2). 

We write CNLa  for the category of complete noetherian local O-algebras with 

residue field F. For any object A E CNLo,  we write mA for its maximal ideal. 

We consider the following type of algebraic group G defined over (.9: Let V be 

an (.0-free module of rank n and ( ~ ): V x V -+ (.9 be a symmetric or symplectic 

bilinear form with unit discriminant. For each object A E CNLa~ we consider 
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the induced bilinear form ( , ) A :  V(A) × V(A) --4 A by ( , )  for V(A) = V ®o A. 

Then 

G(A) = {g e End(V ®o A)I (gx,.qy)A = Y ( g ) ( x , y ) A }  

for all x, y E V ®o A with v(g) E A × . We then define s(A) to be the Lie-algebra 

of the derived group S of e over A. Then we define Ads(~o)(a) = T(a)s~o(a) -1 

for s E s(2) and a representation ~: ~ -4 G(5). In this way, we get 

(2.1) Ads(~o): ~ -4 GL(s($)). 

For a character X: ~ --+ $×, ~ ® X still has values in G, and Ads(~) 

Ads(~®X). Let Cdet: ~ -+ O x be the Teichmiiller lift o fde t (~modmj) :  ~ --4 F × . 

Similarly, we write ¢~ for the Teichmiiller lift of v(T mod mj). Then ¢-1 det(~) det 

and (¢ . ) -1~(~)  are p-profinite characters. Thus i fp  is prime to 2n, we have the 

unique n - t h  root • of ¢-1 det(~) and the unique square root ~ '  of Cv-lv(~) .  

Since det(~) 2 = v(~o)" and ¢2 = (¢~)n, we see ~2,, = (~,)2,~; thus • = ~' .  We det 

then put ~o0 = ~ ® • -1. Then v(~) = ¢~ and det(~) = Cdet. Therefore we may 

assume, if p is prime to 2n, 

(Rt) det(~) and v(~) have values in OX; 

(Ss) det(~) and v(~) are of finite order, and their orders are prime to p. 

Anyway, by extending scalar O, we may assume (Rt) without assuming that p is 

prime to 2n. On the other hand, to achieve the condition (Ss), we may need to 

assume that  p is prime to 2n. 

Example 2.8: Let M/Q be a rank n-motive with coefficients in Q. We suppose 

that  M is pure and regular. Thus ~ : 7/~p and E = Q. We suppose that 

M has a polarization ( , )M:  M ® M --+ Q(r) (see [DM] Section 4) for the 

Tate motive Q(r) = Q(1) ®r. Then the Galois representation ~ on the p-adic 

~tale realization of M has values in the similitude group G of the symmetric 

or alternating form induced by ( , )M. We suppose V(~) ~ V(~)( -r )  for the 

contragredient ~ under the polarization. By extending scalar to sufficiently large 

O, we may assume that the group G(O) is one of the types of groups we are 

studying. The polarization splits M ® M v into two pieces, symmetric part and 

alternating part with respect to the polarization: M ® M v = Sym 2 (M) ~ A 2 M 

(regarding M ® M v = End(M)).  We define Ad(M) to be Sym2(M) or A 2 M 

according as the parity of the polarization. 

Now we assume that  ~ is nearly ordinary of Borel type. We may then assume, 

without losing much generality, that the Borel subgroup B C G is associated 

to the Hodge filtration of the de Rham realization of the motive M under the 



Vol. 120, 2 0 0 0  ADJOINT SELMER GROUPS AS IWASAWA MODULES 377 

comparison isomorphism. Since the complex conjugation c reverses the Hodge fil- 
tration, we may assume that the complex conjugation ~(c) represents the longest 

element in the Weyl group of the split torus T of B. Then in this similitude group 

case, the adjoint action on the Lie algebra t of T is scalar multiplication by -1  

outside the center of G (basically by definition of G). Thus Ad(M) is always 
critical in this case (and hence Ad(M)(1) is also critical). 

Hereafter we float the notation "G" and write G for the group which is the 

target group for Galois representations. Thus if we look into representation 

having values in GL~(A) (A E CNLo) we write G for GL(n)/o, otherwise G is 

the algebraic group introduced as above. We suppose 

(Sp) G is split over (9. 

(Pb) The stabilizer of the filtration (filp) in G(J) is equal to Pp (5) for a parabolic 

subgroup Pp of G. 

Since G is split over (9, we have 

(Sm) The group G and the center Z of G are both smooth over (9. 

Since G is split over (9, the parabolic subgroup Pp in (Pb) is conjugate to a 

standard one (defined over O) in G(J). By abusing the language, we sometimes 

call the conjugacy class in G(A) of the standard parabolic subgroup the class of 

Pp (over A). 

Since s(J) can be regarded as a subspace of V(AdsL(~)(~)), we can define 

(+) Vp~(Ads(~)) = V(Ads(~o))~'] Vp~(AdsL(n)(~o)). 

Then we define Sel(Ads(qo)) and Sel_ (Ads(qo)) with respect to V+(Ads(~)) and 

V-(Ads(~o)), respectively. 

2.4. UNIVERSAL DEFORMATION RINGS. We suppose that $ E CNLo. We put 
= 99modrnj: ¢i -+ G(]F). We write ~j,p for 6~,j,p. Let 7~p be the Lie algebra 

of Pp in (Pb). Then for the Lie algebra g of G, g/7~p has a natural filtration 
induced by (filp), which is stable under the adjoint action of Dp. Let gr(g/TC'p) 
be the graded module under this filtration. When G = GL(n), the filtration on 
gl is the double filtration induced by gl($) = V(qo) ® V(~) for the contragredient 

of ~o. In particular, 

((O1/P )(Jl)) ~ ~ V ( 6 j  ) V(6i ) "~ ~Homh(6j,p,6~,p) gr p = ,p ® ,p = 
i>j i>j 

as D,-modules. When G ¢ GL(n), gr((9/T'p)($)) can be ident i f ied  with a 

submodule of the above. In other words, writing the Levi-component Mp of Pp 
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as M1 x M2 x -..  x M,~p for the split rank mp of the center of Mp so that  the 
derived group of Mi is either simple or trivial, we have 

c v(aj,p) ® v(~i,,) ~ ~ Homj(fij,p, 6i,p) 
l~j<i~_mp l~_j<i~_mp 

for the projection 6i,p of ~lDp to Mi(5). 

Let Dp be the decomposition group at p • SL in -~L, and we write Ip for 

the inertia subgroup of Dp. We consider the following four conditions (cf. [Till 

Chapter 6): 

(AIL) PL is absolutely irreducible as a representation of-~L illto GL,(E); 

(ZL) The centralizer of each deformation p: ,e)L ~ GLn(A) (A • CNLo) of PL 

is made of scalar matrices in GL~(A); 

(ZB,L) The centralizer of each deformation & Ip --+ GL,~(A) (A • CNLo) of~,p 

is made of scalar matrices in GL,~(A) for all PiP in L and i; 

(RegL) H°(Dp, ({~/Pp)(F)) = 0 for all p • SL. 

The last condition (RegL) follows from the following condition: 

(RGL) HomD~ (V(~i,p), V(~j,p)) = 0 for all p • SL and 1 < j < i < mp. 

LEMMA 2.2: Suppose that L / M  with E C M C L C F (p'°°) is a finite Galois 

extension with p-power [L : M]. Then 

(1) (AIM) is equivalent to (AIL) if p ~ n; 
(2) I f  p ~ n, (Z M ) ¢==> (Z L ) , and if p ~ 1-I j,p dim~j,p, (Zp,F ) ~ (Zv,L ) ; 

(3) (RGM) (resp. (RegM)) is equivalent to (RGL) (resp. (RegL)). 

Proof: We first prove (1). Since Gal(L /M)  ~s nilpotent,, we may assume that  
L / M  is cyclic. Suppose that PL is reducible, and'write E for one of absolutely 

irreducible subquotients. Let H C Gal (L /M)  be the stabilizer of E. Then writing 

L ~ = L H, since L / E  is p-power cyclic, E extends uniquely to a representation 

EL' of ~L = Gal(F(P'°°)/L~) (because other extensions are of the form ~L' ® X 
for a character X: Gal(L/L')  --+ F x , which is trivial). Thus by the Frobenius 

reciprocity law, PL' becomes already reducible, containing EL,- Thus we may 
assume that  H = (1} and L = U. Then by the absolute irreducibility of E, 

Hom~,~(E,E ~) -- 0 for all non-trivial ~ E Gal(L/M).  Therefore by Mackey's 

theorem, IndL M E is irreducible, and hence ~ ~ IndL M E- In particular, we have 

n -- dim~ = [L : M] dimE, and hence [L : M] -- 1, because p { n. This shows the 

first assertion. 
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We now prove the first half of (2). Let p: -~M "~ GL~(A) be a deformation of 

PM for an Artinian local (9-algebra A. By the assumption p ~ n, E n d A ( V ( p ) )  = 

V ~ A as ~M-modules for V = V(AdsL(~)(p)). Write 

Z(p)  = {x  • GLn(A)I x p x  -1 = p}. 

Then Z(p)  = A × .'. :. H°(~3M, V) = 0. The action of ~M on W -= H ° ( ~ L ,  V)  

factors through A = G a l ( L / M ) .  By definition, H°(A,  W) = H°(.~M, V) = 0. 

Let W* be the Pontryagin dual of W. Then H ° ( A , W )  is the Pontryagin dual 

of W / a W  for the augmentation ideal a of A[A]. Since A is a finite p-group, a is 

nilpotent. Thus by Nakayama's lemma, W = 0 ¢=:v W* = 0 ¢=:v W * / a W *  = 

0 ~ H°(~M,  V) = 0. This shows the result. The same proof applies to 

(Zp,L). 
We now prove (3). We look at 

Y = Hom~(Y(~i,p), V(~j,p)) and W = H ° ( ~ L ,  Y) .  

Then (RGM) is equivalent to HO(Dp ,V)  = 0 for all j < i. Since Ap C A is a 

p-group, by the above argument, 

H ° ( D p , V )  = H°(Ap ,W)  = 0 -,' W = O, 

which shows the assertion for (RG). The same argument applied to V = (g/7~p)(F) 

yields the equivalence for (Reg). 1 

Two deformations p and p' of ~ (with values in G(A) )  are strictly equivalent 

if p(g) = x p ' ( g ) x  -1 for x • (~(A) for the formal group G, that  is, 

G(A) = {x • G(A)I x - 1 modmA}. 

We write p ~ pr if they are strictly equivalent. A deformation p is called n e a r l y  

o r d i n a r y  of type ~" = {Pp} if we have the following filtration of Dp-modules for 

all p • S whose stabilizer is in the class of Pp over A: 

(filp) o c Y ( p ) l , p  c v (p )2 ,p  c . . .  c v(p) , , ,~,p = y ( p ) ,  

where V(p ) /V (p ) j , p  is a A-free module and ~p,j,p mOdmA ~ ~j,p for all j .  

We assume that (Rt) and write Cdet = det(qo) and ¢~ = v(~). We put ¢ 

for the pair (¢det,¢~) if G ¢ GL(n) and ¢ = Cdet if G = GL(n). Since these 

characters have values in (9 x , we may regard them as characters having values 

in any object A C CNLo by composing the structure homomorphism (9 --~ A. 

Under (Sm), (ZL) and (RegL), the functor OCL = 0¢ associating to A • CNLo G,L' 
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strict equivalence classes of type ~" deformations p: J~L ~ GLn(A) of ~ with 
(det(p), v(p)) = ¢, is representable as shown by Mazur, Boston and Tilouine (cf. 

[Till Chapter 6), where Cdet and ¢~ are regarded as having values in A via the 
structure homomorphism: O --+ A. Thus there exists a unique couple (R, 0) = 

R ~ ( G,L, ~¢G,L) made of R E CNLo and a continuous deformation Q: Y)L --+ G(R) 
of ~ such that  for each nearly ordinary type ~ deformation p: ~')L " ~  G(A) E 
d~CG,L(A ) of p, there exists a unique O-algebra homomorphism ~p: R --+ A such 

that  p is strictly equivalent to tp o Q. In particular, we have a unique O-algebra 

homomorphism 7r: R ~ J such that r o ~ ~ ~. 

Write ~ = 5j,p. Under the assumption (Zp,L)  , the deformation functor for 

H = Ip or Do: 

is representable over CNLo. 

-+ GLdim(~)(A)l ~ modmA ---- ~} /  

We write (RH~,QH~) for the universal couple. 

For the universal deformation Q E (I)¢(R) of type ~', we have 5~,j,p: H -+ 

GLdim~, p (R), which is a deformation of 5j,p over H. Thus we have a canon- 
R H- --+ R inducing 5~,j,p from the corre- ical O-algebra homomorphism ij,p: p,5~,p 

H sponding universal representation of H. For H = I and D, we write RGL(n), F 
~'~ Hp for ~)j,p(Rp,~j,p) and ~H: RH ~ R for the tensor product of these morphisms. 

D Again by definition, RGL(n), L is naturally an R/L(n),L-algebra. 
Let Mp be the (standard) Levi subgroup of the standard parabolic subgroup 

in G conjugate to Pp. Then we can regard the representation on gr(V(Fp)) = 

(~j  Y(hj,p) as a representation 5p of Dp having values in M(F). Then we can 

think of the deformation functor for H -- Dp and Ip: 

~H(A) = {p: H -+ Mp(A)] p = 5p modmA} IMp(A), 

where/~rp(A) = {x E Mp(A)[ x = 1 modmA}. Under (Zp,L) for individual 5j,p 

for each j ,  this functor is representable, giving rise to the universal ring. RHG. 

We put 

A A 

(2.2) R D (~pesFRDyL and RI,L (~pes  RIp G ,L -: = ,L " 

The global universal deformation ring R~G,L is an algebra over the local one RH, L 
H for H ---- I and D, and the algebra structure of R~G,L over RGL(n), L for H - I 

and D factors through RH, L . 
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2 .5 .  KAHLER DIFFERENTIALS ON UNIVERSAL DEFORMATION RINGS. We recall 

Mazur 's  argument (cf. [ M I  D to relate 1-differentials on Spec(R) (R -- R~a,L) with 

the Selmer group Sel*(Ads(~o))/L. 
For any R-module X of finite type, we write R[X] for the R-algebra with 

square zero ideal X.  Thus R[X] = R (9 X with (r (9 x) (r' (9 x')  = rr' (9 (rx' + r'x). 
It  is easy to see that  R[X] E CNLo.  We consider the O-algebra homomorphism 

(: R --+ R[X] with ( m o d  X = id. Then we can write ( ( r )  = r(gd((r) with d((r) e 
X. By the above definition of the product, we get d( ( r r ' )  = rd((r')+ r'd((r) and 

d((O) = 0. Thus d( is a derivation, i.e., d( E Dero(R,X) .  For any derivation 

d: R --+ X over (.9, r ~-~ r (9 d(r) is obviously an O-algebra homomorphism, and 

we get 

(2.3) { p E ~¢,L(R[X])I p m o d X  = 0 } / ~ z  

{p E ~g,L(R[X]) I p m o d X  ~ O} 

~- {~ E Homo_ozg(R,R[X]) 15modX = id} 

~- Dero(R,X)  ~- HomR(f~R/o, X),  

where " ~ x "  is conjugation under 1 (9 Mn(X)  n G(R[X]). Here and hereafter 

f~A/B for a B-algebra A (A, B E CNLo) indicates the module of continuous 

1-differentials with respect to the profinite topology. 

Let p be the deformation in the left-hand side of (2.3). Then we may write 

p(ct) = o(a) (9 u'o(a ). We see 

o(a ) = = 

and we have 

U;(aT) = 0(a)U;(T) + U;(a)0(T). 

Define up(a) = Up(a)O(a) -1. 
On the other hand, x(a) = p(a)~(a) -1 has values in S(R[X]), and x = l@u  ~-+ 

u -- x - 1 is an isomorphism from the multiplicative group of the kernel of the 

reduction map S(R[X]) --~ S(R): {x E S(R[X]) I x -= 1 m o d X }  onto the additive 

group A d s ( X )  = s(R) ®R X = V(Ads(o)) ®R X. Thus we may regard u as 

having values in A d s ( X )  = Y(Ads(o)) ®R X. 
We also have 

( 2 . 4 )  

= - 1  
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Hence up: ~L  --~ Ads(X)  is a 1-cocycle. It is easy to see the injectivity of the 

map: 

{p ff 4~¢a,L(R[X]) I p m o d X  ~. ~} / ~x~-+ HI(~3L, Ads( X) ) 

given by p ~-~ [up]. We put V~(Ads(X)) = V~(Ads(o))®RX. Then we see that 

(2.5) up(Ip) C V+(Ads(X))  ~ u~p(I,) C V+(Ads(X))  ¢==~ d~(R~ ) = 0 

if ( E Homo-~lg(R, R[X]) induces p. 

Note that $* = U x  X for R-modules X of finite type, which shows R[J*] = 

Ux R[X]. From this, any deformation (continuous in an appropriate sense) 

having values in G(R[$*]) gives rise to a continuous cocycle (see [HT] Chapter 2 

for details about continuity). In this way, we get 

(2.6) (~R/A ®R $)* TM HomR(f~R/o, $*) ~+ HI(~L, V(Ads(~))*) 

if R is an A-algebra for an object A of CNLo. Basically by definition, p is nearly 

p-ordinary if and only if up restricted to Ip has values in V-(Ads(q0))*. 

We can argue in the same way as above, replacing the inertia groups by the 

decomposition groups, and we get the corresponding results on the strict Selmer 

groups. Thus we get from this and (2.5) the following fact: 

THEOREM 2.3: Let G = GL(n) or the group introduced in 2.4. Let S be the 
derived subgroup of G. Suppose (ZL), (RegL) and (Zp,L) for 6p for all PIP" Then 

. 

Se (Ads(~))/L - flR~,L/R~, L @R~a.L 5, and 

.L/o ®R J • = ®R,a. L = J, Selst(Ads(qo))/L ~ fiR, a L/RDL Sel* (Ads(~))/L ~n~ ~a,L 

as J-modules. Moreover, we have the following exact sequence: 

~RDa,L/R'a,L ®ag,L J -+ Sel*(Ads(~))/L -+ Sel:t(Ads(~))/g --40. 

2.6. TWISTED SELMER GROUPS. Let ~: Gal(F(P'°°)/E) -+ GL,~($) be a rep- 

resentation. Let ~ = ~modm~. Suppose that PE and ~E are nearly ordinary 

of type )r  _ {(filp)}p. Fix a Selmer datum ,.q = {V~} for qOE. In this section, 

we write Sel(q0)/L for Sels(9~)/L. We introduce the Selmer datum for IndF E ~gF 

and ~ ® ¢ (for an Artin representation ¢ of A = Gal(F/E)) induced from $ and 

study the relation between Sel(CpE ® ¢),  Sel(IndF E q0F) and Sel(~F). 

Since [F : E] is prime to p, if F is sufficiently large, we can decompose IndEF F 

(for the trivial Y)-module F) into a sum of absolutely irreducible representations 
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-¢: A -_ Cal(F/E) --~ GLm(¢)(F): 

Ind f  F = ( ~  m ( ¢ ) ¢  

with multiplicity re(C) = dim(~). Then this decomposition lifts to a unique 

decomposition of co[A]-modules: CO[A] = (1~-m(¢)¢  for a representation ¢: A --+ 

GL,~(~)(CO) such that C m o d m o  = ¢. The ¢-isotypic component CO[A][¢] of 

CO[A] is an co-algebra direct summand of CO[A] because of p ~ IAI. We write 1¢ 

for the central idenpotent of CO[A][¢]. Then for any co[A]-module X, we write 

X[¢] = I c X  and call it the ¢-isotypic component of X. 

Let qoF = ~0Ela. Let L be an extension of E linearly disjoint from F over E. 

We put M = LF. The natural action of A on HI(~5, V(CpF)*) induces the action 

of A on Sels((PF)/M. We then write Sel(qOF)/M[¢] for the ¢-isotypic component 

of Sel(~pF)/M. We like to give a Galois-cohomological definition of Sel(qoE®O¢)/n 
SO that  

(TW) Sel(~OF) /M[¢] ~- (Sel(~0E GO ¢ ) /L) m(~) 

as 5[[Gal(L/E)]]-modules if L/E is a Galois extension. By linear-disjointness of 

L and F over E,  we have res : Gal(M/L) ~ A by the restriction map. Let E 

be the set of primes ramifying in F(P'~)/E, and let E(~'~)/E be the maximal 

extension unramified outside E U {oe}. Let Gx = Gal(E(E'~)/X) for a subfield 

X of E (~'°~). Then we define two 6E-modules in the following way: 

IndE(V(pF))  = CO[~E] ®O[gr] V(pF) and CO[A] ®o V(pE). 

Here we regard CO[GE] @o[6F] V(pF) (resp. C0[A] Go V(pE)) as a left GE-module 

by a ( r  ® V) = err ® v (resp. ¢(Y® v) = ~ ® ~rv), where ~ is the restriction of a 

to F. We claim, as co[GE]-modules, 

(2.7) ~: IndE(V(pF))  ~ COlA] Go V(pE). 

The isomorphism ~ is given by 

where ~ ~-+ ~ indicates the projection of GE onto A. 

(1) By Shapiro's lemma, we have HI(GL, Ind E V(pF)*) ~ Hl(~M, V(qOF)*). 
(2) On the other hand, from (2.7), we have 

HI(GL, Ind~ V (~pF)*) ~ G HI(GL, V()gE ® ~)*)mtq,). 
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We can let A act on O[A] ® V(~E) by 6(a ® v) = a6-1® v. This action commutes 

with the action of GE on IndF E ~Y- Since ¢ is self-O-dual (p { tAI), 

(o[A] ® = (o[A][¢]) ® 

Then, combining the two identities (1) and (2), we see that, for V = V(qOE ® ¢), 

(2.8) t , :  HI(~L, V*) re(C) ~ H°(A, HI(~M, V*)) re(C) ~- HI(GM, V(~E)*)[¢] 

is an isomorphism of O[Gal(i/E)]-modules, identifying A with Gal(M/L). 
There is another way of showing the isomorphism (2.8): Writing V = 

V(~E ® ¢), we have from the inflation-restriction sequence: 

0 --+ Hi(A, H°(GM, V*)) ~ HI(GL, V*) -St H°(A, HI(GM, V*)) 

=~ HomA (Y(¢) , HI(GM , V(~E)*)) -+ H2(A, H°(GM , Y*)) . 

Since d = IF : E] is prime to p, Ha(A, H°(GM, V(~E ® ¢)*)) = 0 for all q > 0, 

and hence we get the isomorphism (2.8), because 

HomA (V(¢), HI(~M, V(~oE)*) re(C) ~- HI(~M, V(~OE)*)[¢]. 

We can give another definition of Sel(TF)/M equivalent to the original one, 

using GM in place of .e) = Gal(F(P,°°)/F): 

(2.10) Sel(TF)/M =Ker(HI(~M,V(~oF)*) 

-5' YI Hz(I~' V((pF)*) x 1-I HI(I~' V(~F)*/V~ (~F)*) ), 
~{p 9~lp 

where capital gothic characters indicate prime ideals of M and r is the product 

of the restriction maps for ~ { p and those composed with the projections: 

for rip. 
There is a local version of the restriction map ~: First we fix a prime ideal ~ of 

M dividing a prime ideal PIP in L such that V~ (~of) = V~ (tOE). All other primes 

over p can be written as a (~)  for a E 6M\6L/Dp. Thus D~(V ) = crDva -1 
and V~V)(~F ) = a(V~(tpF)). Note that ~MO'Dp = O~MDo -= oDp~M, and 

hence O[GMaDp] is a right and left GM-module. Note that {~'IP} = {a(~)} 

{~M\~L/Dp}. Since ~M A Dp -~- Dr, we may regard, inside O[6L] ®O[~M] V, 

( 2 . 1 1 )  a - 1  ~ " ~ D P ~ - I  In(laD, a_ , V-(~) -= a-10[aDpa -z] ®o[~m..-~] V (~) 

= O[Dpa -1] ®O[,,Dv,,-'] V-(~p) C O[Dpa-ZGu] ®o[au] V C Indg V, 
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where V = V((pF) and V~g~) -- V~)(~pF). We put 

--1 "* --c~D~ a-1 (2.12) Vp- (IndF ~ ~F) ---- ~_, a mu Dpa_, Va(~), 
a 

which is stable under Dp. Thus {Vp-(IndE~oF)} gives a Selmer datum for 

Indg E ~F. We write Sel(Indg E ~F) for the Selmer group with respect to this datum. 

Note that for h E GM, 

(2.13) (ha)-'" .h,,D,~ (ho-)-' mdh,,Dp (h,,)-' VZ,,(~) 

= (ho')-'O[haDp (ha) - ' ]  ®O[h,,Ov(h~)-'l h(V-(v)) 

= a-lO[aDpa -1] ®O[~Dvo-1] V ~ )  

- 1  I . . a D ~ a  -1 
= o" l a u D , c , _ 1  Va-(g3) C O[Dpdr - IGM]  GO[~,]  V. 

Then writing Ap for the image of D,  in A, we conclude from (2.13) 

(2.14)Vp-(Ind~ q0F) ( ~  --1"," .aD."Ca -1 ---- O" In(laD,,a_1 V~(g~) 

CtE~M \ g L / D p  

~- (1) o [ a y  ~] Go v f ( ~ )  = o[,',] Go v,-(~o~), 
o-EA/Ap 

which shows ranko Vp-(IndE ~OF) = g(~/p)e(~/p)f(~/p)d = [F : E]d for d = 

dim(Vp-(~F)) and by Shapiro's lemma, 

@ H I ( I ~ ,  V,~((pF)*) TM g l ( Ip ,  Vy (IndFF E ~F)*). 

Thus fixing an isomorphism: Y(¢) re(C) TM O[A][¢] for a model Y(¢) of 9, we 

define a Selmer datum for ~ G ¢: 

(2.15) v y ( v ~  G 9) = V(¢)  Go V;-@~) c 0[,",] Go V ( ~ ) .  

Then we get an isomorphism induced by t 

(2.16) t :  Ul( Ip ,Y- ( Ind~F)  *) ~- CHI(Ip,V~-(TE@¢)*) re(C). 
,P 

We now look at a prime q 1 ~ p of L ramifying in M/L. We have the following 
exact sequence: 

(2.17) 0 -4 Hl(Iq/[9., H°(/9., V((flE ® ~1)*) - ~  H 1 (/q, V((flE ® 9)*) 

"% S°(I,, Ha(I~, V(~E G ¢)*)) t,~%8 U:(Iq/I~, S°(I~, V((p~ ® ¢)*). 
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Since Iq/Io "-~ A, the order of Iq/I~ is prime to p. Hence 

HJ(Iq/I~., H°(I~, V(cpE ® ¢)*)) = 0 

for j > 0. This shows that any 1-cocycle u of Iq trivial on I~ is already trivial 
on Iq, i.e., Ull ~ = 0 ¢* Ull ~ = O. In particular, u is unramified at q. 

By the above argument, we can define for each irreducible representation ¢ 

of A, 

(2.1s) Sel(~oE ® ¢)/L = Ker(HI(~L, V(~E ® ¢)*) A 

H H~(I~ , V(~ ® ¢)*) × I-[ H~(IP , V(V~ ® ¢)*IV~ (~ ® ¢)*)). 
q{p PIP 

Similarly we define 

(2.19) Sel(IndF E ~OF)/L = Ker(gl(~L,  Y(IndF E ~F)*) Z+ 

H g l  (Iq, V(Ind~ q0F)*) X H Hl(Iq' V(Ind~ ~F)*/V~-(Ind~ qOF)*)). 
q{P PIP 

Then the above argument shows the following isomorphism of A-modules: 

(1) Applying Shapiro's lemma to local and global Galois groups, 

Sel(IndF ~ ~F)/L ~- Sel(~F)/M ~ ~ Sel(~F)/M[¢]; 
¢ 

(2) Sel(IndF E ~OF)/L TM (~¢(Sel(qOE ® ¢)/E)  "~(*)- 
From this, we obtain 

PROPOSITION 2.4: Let L / E  and FIE  be Galois extensions linearly disjoint over 
E. Suppose that p { IF : El. Put M = LF. Suppose near-ordinarity of type 
~" = {Y(Sp)}plp for -fiE: Gal(F(P'°°)/E) --+ GLn(F). Let 2 be an integral domain 
in CNLo. Then for each deformation ~E: Gal(FP'°°)/E) --+ GLn(,~) nearly 
ordinary of type $', we have an isomorphism of O[A][Gal(L/E)]-modules: 

~ @ ( s  Sel(~F)/M = Sel(Ind ~V)/L ~ el(~E ® ¢)/L) 
¢ 

where ¢ runs over ali irreducible representations of A and re(C) is the multiplicity 
of ¢ in O[A]. This isomorphism induces 

Sel(~v)/M[¢] ~ (Sel(~E ® ¢)/L) ~(~/, 

where Sel(~F)/M[¢] iS the ¢-isotypic component of Sel(~v) /M. 



Vol. 120, 2000 ADJOINT SELMER GROUPS AS IWASAWA MODULES 387 

2 .7 .  CONJECTURAL HOLOMORPHY OF THE p-ADIC L-FUNCTION OF 

Ads(~a) ® ¢.  The argument in Example 2.7 just tells us that the Selmer group 

Sel* (Ads (~a)®¢)/E should be torsion under the assumptions in Example 2.7. On 

the p-adic L-function side, in principle, for a given absolutely irreducible Artin 

representation ¢: ~ -+ GLm(J), the p-adic L-function should be holomorphic 

at s = 0 if Ads(~)  ® ¢ and Ads(~a) ® CA f for the p-adic cyclotomic character 

Af (sending the geometric Frobenius Frob[ to N([)) do not contains the trivial 

representation ([H96b] Section 4.4). 

LEMMA 2.5: Suppose p ~ IF : El. Then Ads(-f) ® ¢ does not contains the 
trivial character for an absolutely irreducible representation ¢: A --_ Gal( F / E) -~ 

GL~(F) if (ZF) is satisfied by -f. If Ads(-f)®-¢ contains the Teichmiiller character 

and -fF is absolutely irreducible, -fF is an induced representation from F(#p). 

Proo~ The first assertion follows from the proof of Lemma 2.2. If V(Ad(-fF)) C 

HomF(-fF,-fF) contains the Teichmiiller character w, then -fF -~ -fF ® (.d. This 

implies -fF ~ IndF(,p) ~ for a representation e of 23F(t,p), by [DHI] Lemma 3.2. 
| 

By the lemma, under (AIF(t,p)), the cyclotomic p-adic L-function 

Lp(s, Ads(~a) ® ¢) (if it exists) should be holomorphic at s = 0. 

3. Base-change for deformation rings 

Let E be a number field or a p-adic field field with (p-adic) integer ring OE. 

Let F I E  be a finite Galois extension with Galois group A. Let M -- E if E is a 

p-adic field and M = F (p'°°) if E is a number field. We write ~ = Gal(M/E) and 

23 = Gal(M/F).  Then we fix a n-dimensional continuous Galois representation 

-f: O -+ G(F) for a finite field F of characteristic p. Let n = dim-f and suppose 

that  p ~ 2n. We suppose that  -f is nearly ordinary of type 9 r -- (Pp}p if E is a 

number field. We study the relation between deformation functors of -f on ~ and 

23. 

3.1. DEFORMATION FUNCTORS. Let LIE  be a subextension of M / E  with 

23L = Gal(M/L).  Fix two characters Cdet: ~ -+ O x and ¢. :  ~ -+ O x such 

that  (~det --  det o-fmodmo,  ¢~ = u o - fmodrao  and 2 Cdet ---- Cu" Since p { 2n, 

the information of ¢~ determines Cdet and vice versa. When G = GL(n), we 

disregard ¢~. We study the following functors defined on CNLv: 

(3.1) {p: 23L C(A)I p =-fmodmA} / -~G,L ~j.] : 
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(3.2) ~"'°rdrA~ {P: ~L -~ G(A) ~ (I)f"n(A)[ p is nearly ordinary of type 9 v} G ,L k ) -~ 

(3.3) ¢¢G,L(A) = {p: ~)L --~ G(A) E ¢"'°~a(A)l detop = (~det and ~ , o p =  ¢ , } .  

Hereafter we fix G and write (I) L for the functor defined above. Of course, {~.ord 
is defined only for global L. 

Remark 3.1: We introduce one more functor to cover Galois representation as- 

sociated to unitary groups. Let c be an element of order 2 in Aut(E).  Extends 

c to M. Then c a c t s  on ~ b y g  ~ cgc - t .  We consider pC(g) = p(cgc-1) for 
oNful l  ( A ~  .~  p E ~L ~.,,1 as long as c leaves L stable. We suppose that ~c ~. Then we 

define a functor, supposing the properties: ? are stable under p ~-~ ~c 

mU, L ( A  ) = p e (1)aL(,,),L(A = , 

where ? is a combination of ¢, fu l l  and n.ord. This functor is representable 

by RCU, L E CNLo under (ZL) if ? = fu l l  and ? = (full ,  ¢) and under (ZL) and 

(RegL) if ? = n.ord and ? = ¢. By definition, the functorial map: p ~+ ~ induces 
? ? 

an involution o n  OGL(n), L and hence on the universal deformation ring RGL(n), L 
representing the f u n c t o r  (I)GL(n), L and on the corresponding Selmer group. We 

write the fixed part of the involution of Sel* (AdsL(n)(~))/L as Sel*c(AdsL(n ) (~))/L 
and call it the anti-cyclotomic part of Sel*(AdsL(n)(~))/L. Then if p ~ 2n, we 

have 

(3.4) ftR$.L/R~L(,). L ®R$,~ j ~ Sel*c(AdsL(,~)(~))/i" 

3.2. BASE-CHANGE. Let L/L '  be an intermediate Galois extension of M / E  
with Galois group F. Suppose that (I)~, i and (I)~, L, are both representable. Let 
O/7 7 ? ? ? ? = O~'L/L, : RG, L -+ RG, L, be the base change morphism defined by a" ~i~ ~ 

YL' I~L for tSi = Gal(M/L) .  We like to study the morphism a ?, in particular, its 

kernel and cokernel. For that,  we recall the theory of I. Schur describing when 

one can extend a representation of a normal subgroup to the ambient group (see 

[H96a] Appendix). 

We recall the condition (Sin) in 2.3 that G is smooth over O, and by that,  we 

have 

(s) The reduction map: G(O) --+ G(F) is surjective. 

For each a E -~L', we choose g(a) E G(O) such that g(a) - F(a) modmo.  Then 

we define p"(g) = g(a)-lp(aga-1)g(a).  The strict equivalence class [p~] E (I)L(A) 

is independent of the choice of l(a). Thus ~)L' acts on (I)~, (A). If a E Y)L, then 
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and t .(a)-lp(a) e G(A). Therefore, the action factors through F = Gal(L/L').  
Suppose (ZL) and p C (I)L'r(A) = {p e OL(A)[ p° ~ p for all a C F}. Then we 

can find a map c: ~L' --+ G(A) such that c -- ~modmA and p = c(a)-lp°c(a).  
We may further assume that c(1) = 1 and c(ha) = p(h)c(a) if h E 2)L (see [H96a] 

Appendix). Then we define b(a, T) = bp(a, 7): $~L' X $9L' --+ G(A) by 

c(a)c(T) = b(a,T)C(aT). 

Since b has values in the centralizer Z(p) of p, b has values in G(A) A Z(A) = 
G,~(A) by (ZL) for the center Z(A) = A x of G. As seen in [H96a] page 116, 

h 
b factors through F. Thus b is a 2-cocycle of F having values in GIn(A). The 

cohomology class [p] = [bp] e H2(£, 6--~(A)) is well defined independently of 

the choice of c (see [H96a] Appendix). If bp is a coboundary, writing bp(a, T) = 
0i((;r , T) = ~(O' )~(T)~(~T)  -1  by a cochain (: ~JL' --~ G~-~(A), ~r:  ~ ( o - ) - l c ( o  ") is 3. 

representation of ~L' into G(A) extending p. On the other hand, if there exists 

an extension 7~: 9L -+ G(A), then bp is a coboundary of ((~r) = I r (a) - lc(g)  E 

GIn(A). Thus 

[p] = 0 ~ p extends to a representation 7r: f)L' ~ G(A). 

If G = GL(n), b~ = det(bp) = bdet(p). Thus [det(p)] = n[p], and extensibility 

of p is equivalent to that of det(p) under p { n. In particular, if det(p) = Cdet, 

the extension Cdet corresponds to a 1-cochain ( such that bdet(p) = 0~. Then 

bp = 0(  1/~. The extension 7r = (-1/nc then satisfies det(Tr) = Cdet. Moreover 

such extension is unique, because all other extension is given by 7r ® X for a 

character X: F -+ A x (see [H96a] Appendix). As seen in [H96a] Section A.2.2, 

under (RegL), the extension of p E {~'°"d(A) is again nearly ordinary of type 9 ~. 

Thus under the assumption that p { n, we can extend p E q2CGL(n),L(A) uniquely 

to an element of ¢ (I)GL(n),L, (A) giving 

(I) L(~),L,(A) -- (A). 

I f G  ~ GL(n), writing ( , ) A  for the pairing defining the similitude group G(A), 

we see 
y)A = (b(o, ,-)y)A 

~- (C(O')C(T)C(O'T)--lx, C(O')C(T)C(O'T)--ly)A 

= 

This shows, in H2(F, GIn(A)), 

2[p] = 
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where up = u o p: -~L' --+ GIn(A) is the similitude character of p. Suppose that 

[~p] = 0. Then, we can find (: F -+ G,~(A) such that bp(a, 7) = ( (a )¢(T)¢(ar )  -1 

and b,p(a, T) = ( (a)2~(v)2i (aT)-2 .  Then It(g) = c(g)((g) -1 is an extension of p 

with uTr = uci  -2. Similarly, we get bdet(p) = ~(a)n ( (T)~ i (aT) -" .  Thus if p { 2n, 

then we have 

(bC,L,( A ) -~ ~b~'r,L ( A ). 

If [L : L'] is prime to p, the obstruction cohomology class [p] always vanishes, 

because H2(F,  ~-m~(A)) = 0. Thus we have 

~G,L' ? F 
~- @~,L" 

Summing up, we get 

PROPOSITION 3.1: Suppose p ~ 2n, (ZL) and (Sin). When E is a number field, 

we suppose (RegL) and (Zp,L) in the nearly ordinary case. Then, i f  p { [L : L'], 

we have  

@b,L' = d2 A 

for ? = fu l l ,  ( fu l l ,  ¢), n.ord, ¢. Suppose that u(p) or det(p) can be extended to 

a character ¢: ~L' ~ GIn(A). Then (even i f  PilL: n']), each p e @~'r,L,(A) can 

be extended to a representation ~r: ~L' -+ G(A) such that r - PL' modmA and 

u~r = ¢. Moreover under (RegL), we have 

cb ,L ' ~- ~ and ~ G,L ' = a,L , 

where 
full ¢~'fLUll(A) = {p e CG,L (A)] (det(p), u (p ) )=  ¢}. 

Let ~'L: CNLo -+ S E T S  be the full deformation functor on g)L of the character 
~n.ord t A ~ det(fiL). For each p e V,L ~ ), det(p)-lCdet has values in GIn(A). Thus ifp { n, 

(det(p)-lCdet) 1/" is uniquely determined. If further p { 2n, p® (det(p)-lCdet) 1/n 

is an element in ¢~,L(A), and we may associate (p® (det(p)-lCdet) l/n, det(p)) E 

¢~L(A) x Y:L(A) to p E @n'°rd(A). Since we can recover p out of the pair (p¢,~) 
(A--l lc~l/n by p = p@ ® ~ W d e t , ~ /  , we have 

~n.ord ~ ~L G,L = ~ × JrL and ~V,LmfUll = ~L~fUll'¢ × jCL. 

This shows 

COROLLARY 3.2: Suppose p ~ 2n, (ZL) and (Sm).  When E is a number field, we 

suppose (RegL) and (Zp,L) in the nearly ordinary case. Then 
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(1) I f p {  [L : L'], the base change morphism a ? induces 

R'L,G( 7 -- 1)R ,a = RL',a 
7EF 

for ? = ful l ,  ( full ,  ¢), n.ord, ¢. 
(2) Even if pilL : Lq, the base change morphism o~ ? induces 

"IEF 

Ri,,yuU / ~h,luu ~ L,G / ~ I~L,G (V-- 1)RCL'IC = R~L',(ff t and 
"IcF 

? t~ ? ~ ? 

~,EF 

where ? = ful l  and n.ord. Moreover we have a canonical isomorphism: 

L,G = Im(aL/L')QALAL, 

where ? = fu l l  and n.ord, and AL is the universal deformation ring rep- 

resenting JZL. The ring AL is isomorphic to the Iwasawa algebra 0[ ab 

for the maximal p-profinite abeli~n quotient .gaLb, p of ~)L. 

Proof: The assertion (1) and the first assertion of (2) follow directly from 
IOn.ord ~.~ Proposition 3.1. By the argument just prior to the corollary, we see "~L,C = 

n.ord RCL,cSoAL. Under this decomposition, an~ L, = ~¢L/L' ® ~L/L', where ]~L/L': 

AL --+ A~ is the base change map associated to J:L'(A) ~ ~ ~+ ~]~L E JrL(A). 
The base change m a p  •L/L' is induced by the inclusion: ~L ¢-~ ~L'- From the 

first assertion of (2), we get the second and 

= A *~L',G ~ , G o A L  ---- Im a L' 0 m L/L '  ALAL ' Im /L '  AL L',  

which finishes the proof. | 

3.3. CONTROL OF KAHLER DIFFERENTIALS. We fix a Zp-extension Fc~/F with 

F = Gal(Foo/F) '~ Zp. Later we specialize our argument to the case where 

Foo = FEoo for a Zp-extension E ~ / E ,  but for the moment, Foo/F is an arbitrary 

Zp-extension. Let ~o¢ = Gal(M/F~);  hence, ~5/-~oo = F. Let ~: ~ -+ G(F) be a 

representation. For ~, we suppose (ZF), (RegF) and (Zp,F) in the nearly ordinary 

global case. In the nearly ordinary case, we also suppose: 

(EP) p ~ 2n l ]  dim ~j,p. 
J,P 
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Under these conditions, the functors (PF studied in the prior subsection are rep- 

resentable. Then by Lemma 2.2, the functor Of = ~? F~ is again representable for 

the j - t h  layer Ff fF .  Over F ~ ,  the functor ~ may not be representable but at 

least pro-representable. We write (RFj , ~ i )  for the universal couple representing 

~. 
We apply Corollary 3.2 to F ~ / F j / F .  We write -yj for a generator of Fj = 

R ? Gal(F~/Fj ) .  Let R ~  = R ? = l imj  fj  for ? = full ,  n.ord or ¢. Then R ~  F~o < 

prorepresents OFoo" We then put R~ = C~Foo/F ~ (R~)  = Im(aF~/F~) C RFj. The~ 

by Corollary 3.2, we have R ¢ = R ¢  and 

(3.5) 

PROPOSITION 3.3: Let the notation be as above. Suppose that ? = dp, fu l l  

or n.ord. Let A be a dosed O-subalgebra of R ~  (in CNLo)  on which F acts 

trivially. Let B be an A-algebra in CNLo and 7r: R o --+ B be an A-algebra 

homomorphism. Then we have for 0 < j < k < oo, 

~R~/A®R~ B 
= ~ ~ n ~ / ~ ® n ~ B  

(Tj - 1)aR~/A~R~ B 

Although this result is intuitive and is essentially deduced from Corollary 3.2 

in [H96a] Corollary 1.1, we shall give a proof since this is fundamental in the 

sequel: 

Brook We write R for R ' ~ A B  and R'  for R ~ A B .  Then R/R(Ty - 1)R TM R'. 

Write c~ for the projection: R --+ R'  and ~v' for mo((~roa))Qid)  : R '  -- , A 

B@AB ~ B for multiplication m: B ~ A B  --+ B. Let A = ~r' o a.  We have 

Ker(A) ®R B = Ker(A)/Ker(A) 2 = ftn/B ®R B = ~R~AB/A®AB ®R B 

®R =- R 

Similarly, we have Ker(Tr') ®n B -~ ~R]/A~R]B. We have the following exact 

sequence: 

(3.7) 0 --~ R(?j  - 1)R -~ Ker(A) -% Ker(1r') ~ 0. 

Tensoring B over R to (3.7) and writing J = R('~j - 1)R, we get another exact 

sequence: 

( j / j 2 )  ®R B ---- J ®n B -~ ~R~/A~R~B ~ ~-~R~/A~R~B --"+ O. 
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We look into the B-linear map -y j - l :  Ker(A) --+ R. Write B ~ for the image of B in 

R. Then B'  C Ker(-),j-1) and R = Ker(A)+B'.  Thus (~,j-1)R = (~,j-1)Ker(A). 

Since ~/j is a B~-algebra automorphism of R and j / j 2  is a B'-modute, we have 

r ( q ~ j - 1 ) r ' - ( T j - 1 ) r r ' m o d J 2  ( r , r ' •  J) .  

This shows that  7 j - 1 :  Ker(A) -+ R induces a surjective morphism of B'-modules: 

Ker(A)/Ker(A)2 _+ j / j 2 ;  thus, Im(i) = (7j - 1)(~2R~/A~R~B), which shows the 

result. | 

We can slightly generalize the above result as follows: 

COROLLARY 3.4: Let the notation be as above. Suppose that ? = ¢, fu l l  or 

n.ord. Let Ao~ be an O-algebra with a continuous F-action which is a pro-object 

of CNLo. We suppose that Ro~ has a structure o£ Aoo-algebra and that the 

F-action on Ao~ and R ~  is compatible. Thus R~ is an Aj-algebra for Aj  = 

Aoo/Aoo('~j - 1)Ao~. Let B be an Aoo-algebra in CNLo and 7r: R o --~ B be an 

Aoo-algebra homomorphism. Then we have for 0 <_ j < k < ec, 

(.yj - 1)~R~/Ak ~R~ B ~-- ~R~/Aj®R~ B. 

Proo~ By the assumption and the proof of Proposition 3.3, we have 

~R~/o6R~ B 
,"-'= ~R~/V@R~B 

('~j - ~ )aR; /ogR;  e 

and 
flAk/O@Ak B 

(Tj - 1)~2Ak/O~Ak B 

This yields a commutative diagram with exact rows: 

~Aoo/o®B ~R~e/O ®B r, 
(Tj - 1)flAo~/0 ®B (Tj-- t)fln~/0 ®B 

H~ 1 H~ 1 
f~aj/o ® B " f~R~/o ® B 

We then conclude 

* (.r~_l)f~/Aoo® B ----+ 0 

1 

~RL/Aoo @ B 
('Yi -- 1)~RL/Aoo Q B -~ ~-~R~/Aj @ B, 

which finishes the proof. | 
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4.  C o n t r o l  t h e o r y  for  S e l m e r  g r o u p s  

We return to the situation in Section 2. Thus FIE  is an extension of a number 
field E, O = GaI(F(P'°°)/E) and ~ = Gal(F(P'°°)/F). We fix a Galois repre- 

sentation ~: O -+ G(J) c GL,~(J) nearly ordinary of type 9 v = ((filp)}ptp. Let 

~: O -+ G(F) be the residual representation of ~. We assume that 

(UP) p is prime to 2n[F:  E] and dim~j,p for all p[p and j 

in addition to (ZF), (Zp,f) and (RegF). Let F ~ / F  be a Zp-extension such that  

(TR) Fo~,p = Uj Fj,p is a totally ramified Zp-extension of Fp for all p[p. 

4.1. GLOBAL CONTROL THEORY. For H = I or D, we put R H = RH, Foo in 
H of (2.2). Then we put R H to be the image under the base change map in RF~ 

R H. Then by Corollary 3.2, we have locally and globally 

R H = RodRoo(7 j - and ~ -~ R ¢ / R  ¢ [~,.- 1)R~. (4.1) ~ H H 1)R H R ~ ,  oo~,~ 

Thus we have from Corollary 3.4 

(4.2) (Tj - 1)~R~/R~ ® J ~ ~R~/Ry ® J" 

Applying this to H = I,  we get 

PROPOSITION 4.1: 

Sel* (Ads(~) ® a)/F 
(Tj - 1) Sel*(Ads(~) ® a) /F -~ ~2"~Fj/RI ® J" 

We note here that  we have the following exact sequences: 

(4.3) f~R~./Ro ~ ®R~ J -+ f~R~/R~ ® j --~ Sel*(Ads(~o))/f --~ O, 

(4.4) flRov/n~ ®no D $ -e flR~/Ro~ ® g -+ flR~F/ROD ® .~ --+ 0. 

4.2. LOCAL CONTRIBUTION. We now make explicit the A-module f~R~/Ro ~ ®n~J 

and ~Ro~/Ro~ ®RoD 5. Since G is split over O, the center ZMp of the standard Levi 
subgroup Mp of the parabolic subgroup Pp C G is isomorphic to Gm rap. Then 

the respresentation ~p: Dp --+ Mp can be regarded as a product of m,-absolutely 

irreducible representations ~i,p for i = 1, 2 , . . . ,  mp. We can thus split 

~----mp I RjI ~pESFj~i=lj, i, pR~ 
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into the tensor product of components R I -  associated to 6i,p- The component j,6,,p 
R I -  is the image under the base change map of the universal deformation ring j,6~,p 
of the representation ~i,p of the ineratia group at p over Foo,p = Uj Fj,p in the 
universal deformation ring R~.~,px ,Fj of the inertia group over Fj,p. By Corollary 
3.2, we see 

R I  p,F3 "~ R I_ ~h ,o  ° ,, j,~i,p , A b'~' ' 
ab where A b,. = O[[I),p,p]] for the maximal p-profinite abelian quotient I~,p,p~b of 

the inertia subgroup Ij,p C G a t ( F , / F j , , )  for j = 0 ,1 , . . . co .  Note that the 

natural algebra homomorphism of R / p , f  into ROE factors through the universal 

deformation ring Rgi,pD ,F of 8i,p over Dp. Thus by applying the base change 

map a, we get that the image of A~oo,p in/L~,p,F is, by local class field theory, 

isomorphic to O[[W]] for the universal norm group W inside O~p. Then by the 
total ramification of Foo,p/Fp, O ~ p / W  -~ F. The natural map of Axo,p into R D 

6i,p,F 
is given by the determinant character det 6i,p,e which factors through the image 

(isomorphic to OXfp ) of Ip in D abp,p. Thus the image of f~R~e.F_/r'o,~ @PAe,F 5 in (4.3) 

is equal to the image of f~o[[o;]]/o[[w]] @(9[[0;]] ,~ ~ F @zp 5 = 5. In this way, we 
get from (4.3) the following exact sequence: 

(4.5) ~ 5[Sp] "p-1  ~ f~r~/Ro~ @5 --+ S e l * ( A d s ( ~ ) ) / f  -+ O, 
p6S~ 

where Sp is the set of primes of F over p 6 SE in E and 5[Sp] is the 5-free module 
generated by the elements of Sp, on which A = G a l ( F / E )  acts by its action on 
the set Sp. Here we have the exponent mp - 1 in place of mp because of the fixed 
determinant condition: det p = Cdet, which kills the contribution of 6mp,p. 

We now study f~eoD/Ro ~ @Ro D 5 in (4.4). We look at R ~  and R / .  From the 
exact sequence: 

1 --+ Ip -+ Dp --+ (Frobp) ~ -+ 1, 

taking into account the fact that prime-to-p part of (Frobp)Z does not affect the 
base change calculation done in Corollary 3.2 (1), we see that the image in R v p,0 
of 

R I _ ab p,oo,~ @o[[~=,~]] O[[Dp,oo,p]] 
is isomorphic to 

D I orrD ,,b 1] R~i,p,F = R~,p,F @O[[lp,ab]] U. p,pn, 

where Ip,ab is the image of Ip in D~bp. This shows 

C~ ~ I " R ~ L ,  p ~ '  r _ / r  _ = ® z ~ F -  
O,$1,p 0,61,p 
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Then we obtain from (4.4) the following exact sequence: 

(4.6) ~ 5 [ S p ] m , - 1  L~ ~R~/R~ ®5 ~ ~R*F/Ro o ®5 ~ O. 
P 

4.3. SPECULATION ON THE ORDER OF THE TRIVIAL ZERO. Coming to this 

point, we would ask when the morphisms ~l in (4.5) and eD in (4.6) are injective. 

If it is the case, the characteristic power series in 5[[T]] of Sel* (Ads(9~))/f~ would 

have trivial zero of order > ~pes~(mp - 1)[Sp[ at T -- 0. On the other hand, 

heuristically, the order of such zero should be equal to the number of linear Euler 

p-factors vanishing at s -- 0 of the complex L-functions L(s, Ads(~)) if Ads(~) 

is associated to a critical motive Ads(M) as in Example 2.7. More precisely, 

we need to count the linear factors, vanishing at s = 0, of the modified p-Euler 

factor defined [H96b] Section 3,5 (E), but in our case of Ads (M), the two numbers 

match; so, we can use the number of such factors of the original p-Euler factor 

of the complex L-function. 

To speculate about the order of the trivial zero, we return to the situation in 

Example 2.7..Thus M is crystalline, F = Q, the coefficients of M is also Q, and 

is p-nearly ordinary of Borel-type. We write ep for the number of linear factors 

in the Euler p-factor of L(s, AdsL(,)(M)) vanishing at s = 0. Then ep is the 

multiplicity of the eigenvalue 1 of the crystalline Frobenius acting on the p-adic 

crystalline realization Hcry~(Ad(M)), which is equal to ep = n -  1 and also to the 

Zp-rank of H°(Dp,gr(AdsL(n)(T))). Here the graded module gr(AdsL(n)(9~)) is 

defined with respect to the flag: (filp). The number ep can be defined for general 

(not necessarily associated to a crystalline motive) as follows: 

ep = rank~ H°(Dp, gr(Ads(~))),  

where Dp is the decomposition subgroup at p E SF of Y). We see easily (from the 

argument proving Lemma 2.2) that under (RGF) and (Zp,f) 

(4.7) ep = m p  - 1. 

When Spec(5) has densely populated points associated to critical motives 

Ads(M) ,  ~ is forced to have values in either a symplectic or orthogonal group 

C, because Adz(M) is not critical in the GL(n)-case (n > 2) (see Example 2.7 

and Example 2.8). Since Sel*(Ads(~))/F~ ®J[[T]]-~ ~ ~a~/Ro x ®,~ by Proposition 

4.1, it might be natural to conjecture 

CONJECTURE 4.2: Suppose that 

(1) The group S is isomorphic to either Sp(n) or SO(n); 
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(2) 2 E C N L o  is an integral domain of characteristic zero; 

(3) ~: ~ --+ G(5) is nearly ordinary of Borel-type; 

(4) A d s ( ~ )  is arithmetic in the following sense: for densely populated points 

P in Spec(J) ,  A d s ( ~ ) m o d P  is associated to a critical motive. 

Then we have the following two exact sequences: 

0 -+ ~ 2 [ S p ]  "~'-1 --+ ftR,r/R~ ® 5 -+ Sel*(Ads(~))/F -+ 0, 
p 

0 ~ ~ 5 [ s , ]  m,-1  ~ ~R~/Ro' ® 5  -~ ~R~/~o ~ ® 5  ~ 0. 
p 

The  first exact  sequence is known to be true, when ~ is modula r  two dimen- 

sional (see Corol lary 5.4). We will prove as Proposi t ion 7.1 the second exact  

sequence in many  cases where again ~ is modula r  two-dimensional.  

Anyway we note the following consequence of our argument .  

THEOREM 4.3: Let F ~ /  F be a Zp-extension satisfying (TR).  Suppose t ha t  2 is 

an integral domain of characteristic O. If Sel* (Ads(~) ) /Fj is of 2-torsion for one 

j > O, then Sel* (Ads(9~))/Fo~ is a torsion module of finite type over $[[T]] = 5[[F]] 

for F = Gal(Foo/F) = 7 zp with T = I' - 1. 

Proof: Let t = r L ( I (  - e(7)) c o[[F]], where ¢ runs over all characters  of F 

of order p/ .  For M = (~p 2[Sp] mp-1, M / t M  is a torsion J -modu le  (which is 

killed by r L ( 1  - ¢(.y))). Since tl7 pj - 1, we have the following exact  sequence for 

Sel~ = Sel*(Ads(~))/Fj from (4.5): 

M / t M  --+ S e l * / t  Se l*  --+ S e l ; / t  Sel; --+ 0, 

and we conclude tha t  S e l ~ / t  Se l*  is a torsion J -module .  This  implies tha t  Sel~o 

is a torsion 2[[T]]-module, because t is a pa rame te r  of 2[[T]] over J. II 

4.4. CONTROL OF TWISTED ADJOINT SELMER GROUPS. Now suppose tha t  

p ~ IA] = [ F :  E] for A = Gal(F/E) and F o ¢ =  F E ~  for a Zp-extension E ~ / E .  

We pick an absolutely irreducible representat ion ¢: A --+ GLm(F).  We write 

¢: A --+ GLm(O)  C GLm(2)  for the unique lift o f ¢ ,  tha t  is, ¢ modm~ = ¢.  I t  is 

easy to see, under (RGE)  and (Zp,E), 

(4.8) ep (¢)  = ranks H°(Dp, gr(Ads(~o)) ® ¢)  

= (rap - 1) dim~ Hom~(F[Sp] ,  ~) .  

If  our speculat ion in the previous section is right, ep(¢) = }--~p ep (¢)  should give 

the order of tr ivial  zero of the characterist ic power series in 2[[T]] at  T = 0 of 
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Sel*(Ads(~) ® ¢). We prove in this section that we have an exact control of the 

Selmer group Sel*(Ads(~) ® ¢)/F~ without error term if HomA(F[Sp],¢) = 0 

for all p; so, if Sel*(Ads(~) ® ¢ ) / f  is 5-torsion (as expected when Ad(~) is 

arithmetic), Sel* (Ads (~)@ ¢)/F~ is a torsion 5[[T]]-module without trivial zero 

at T = 0. We will show this last statement in many cases when G = GL(2) in 

Section 6. 

If we suppose that the ¢-isotypic component JI[SF][¢] vanishes for SF = Up Sp, 
then we have from (4.5) and (4.6) that 

(4.9) Sel* (Ads(~))/Fj [¢] -~ flR~j/R~ ® 5[¢]---- f lR~/R? ® 5[¢]. 

The above fact combined with (4.9) and Propositions 4.1 and 2.4 yields the 

desired result: 

THEOREM 4.4: Suppose that HomA(F[SF],~) ---- 0 for an absolutely irreducible 
representation ¢: A -+ GLm(F). Suppose p ~ [F : E], and let ¢: A --~ GLm(O) 

be the unique lift of ¢. Let Ec¢/E be a Zp-extension in which p totally ramifies. 

Let ~: ~ -+ C9[[F]] x be the tautological character inducing ~ : Gal(Eo~/E) ~ F. 
Then, for a generator 7 o f f  = Ga l (F~ /F )  for Foo = F E ~ ,  we have 

Sel* (Ads(~)) @ ¢) / f~  ~_ Sel*(Ads(~o) ® ¢~)/F 

(7 -- 1) Sel*(Ads(~) @ ¢) / f~  -- (~/-- 1) Sel*(Ads(~) @ ¢~)/F 

= ~ Sel* (Ads(~) ® ¢) / f .  

In particular, Sel*(Ads(~)® ¢~) / f  is of 5[[r]]-torsion if and only if 

Sel*(Ads(~) ® ¢)/F is of J-torsion. 

Example 4.1: Let p: ~ -+ GL2(J) be a Galois representation nearly ordinary 

of Borel type. Then we c.onsider the symmetric k-th tensor representation ~ = 
Sym~(p): ~ --+ GLk+I(31), which is again of Borel type, and assume that 

satisfies (Zr) and (RGF). Then we have a decomposition valid over J: 

k 

AdsL(k+ 1)(~) ~ ~ )  det(p) - j  Sym 2j (p). 
j = l  

The component ~j = det(p)-JSym2J(p) has absolutely irreducible reduction 

modulo mj if for example Im(pmodmj)  D SL2(F) and p > 2k + 1. Since p 

is nearly ordinary, ~p and hence each of ~j: ~5 --~ GL2j+I(J) is nearly ordinary. 

The Selmer datum of AdsL(k+I)(~) induces that of 9~j, that is, 

V~- (~oj) = W(AdsL(k+D(qO))AV(qoj), 
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and V+(AdsL(k+I)(T)) = (~)k=l Vp-(~j). Then we have the following isomor- 

phism: 
k 

Sel(AdsL(k+l) (~))/L ~- ( ~  Sel(Tj)/L. 
j = l  

We now analyse how the module J[Sp] k with trivial F-action in 

Sel*(AdsL(k+I)(~))/Fj is distributed to Sel*(~j)/Fj. Fix a Levi-torus Tp of Pp. 
Dp 

We thus have the character Dp -+ Tp(J), which induces the morphism of RG, L 
into RCL . We claim that the Lie algebra of this torus t intersects with V(~j), and 

the intersection is a rank 1 direct summand, that is, t = (~k=l(t ~ Y(~j)). This 

follows from the following fact: Let tp be the Levi-torus of the Borel subgroup 

bp C GL(2) with Im(p]D,) C bp(5). Then tp = Gm x Gm is a 2-dimensional split 

torus in GL(2)/I. The rational representation V(det - j  ®Sym 2j) is then decom- 

posed into the direct sum of weight spaces V(i) of tp for integers - j  _< i _< j on 

which (t, s) E tp = G m  x Gm acts via the character (t, s) ~-4 tis -i. In particular, 
we have t A V(~j) = V(0) and V~(~j) = (~i>0 V(i) (if we order the two factors 

Gm of tp properly). This shows our claim. 

From this, we conclude one component J[Sp] is distributed to each Sel* (Tj)/F~. 

We thus have the following exact sequences: 

Sel*(~j)/F~ ~ Sel*(~pj)/F --4 O, 
(4.10) ~ Jl[Sp] 3_~ (7 - 1)Sel*(~j)/g~ 

P 

(4.11) @)5[Sp] ~ Sel*(~j)/Fj -+ Sel*t(~j)/F i ---+ O, 
P 

where Sel~t(~j)/g j is the strict Selmer group defined in 2.1. In particular, we get 
the following exact sequence: 

Sel*(wj ® ¢)/g~ 
(4.12) 5~(¢) --4 (7_l)Sel,(~j®~b)/Foo -+ Sel*(~j ®¢)/F--+ 0, 

where e(¢) = dim? Homzx (F[SF], ¢) and the Selmer group is defined with respect 

to Vp-(~j ® ¢) = V~-(~j) Go Y(¢) for Artin representations ¢: A -+ GLm(O). 

Suppose that p is associated to a rank 2 pure motive M/E with critical 

AdsL(2)(M). This is equivalent to assuming the following three conditions: 

(1) p is associated to a rank 2 regular motive M; 

(2) E is totally real; 

(3) det(p)(c) = -1  for all complex conjugation e. 
Then ~j is associated to a motive Mj = det(MV) j ®Sym2J(M). The motive Mj 

is critical if and only if j is odd. Thus the Conjecture 4.2 predicts the injectivity 

of ~H for H = I, D for every odd j (see Example 6.2). 
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5. Galo is  r e p r e s e n t a t i o n s  a n d  p-adic  Hecke  a lgebras  

To a cohomological Hecke eigen-form on a reductive group H/F, we hope to asso- 

ciate a Galois representation into its Langlands dual G = H i over a sufficiently 

large O. If H = GL(2)/F for a totally real F,  the association is known by the 

work of several number theorists, notably, Shimura, Wiles, Taylor and Blasius- 

Rogawsky. In this case, G = GL(2)/o.  When the representation ~: ~ -+ GL2(F) 

is modular over a totally real F in an appropriate sense (see below) and is nearly 

ordinary of Borel type, we can prove that the universal deformation ring R~F is 

finite flat over an appropriate local Iwasawa algebra of the p-inertia group. The 

idea is due to Mazur that this ring should be isomorphic to an appropriate Hecke 

algebra for H. After carrying out this task of identifying the deformation ring 

with Hecke algebra (following the method of Wiles-Taylor and Fujiwara [Fu]), 

the finiteness and flatness follows from my earlier works on Hecke algebras [H88] 

and [H89a]. 

It might look odd to study Hilbert modular forms for the extension F rather 

than looking into modular forms for the base field E. Although a A-invariant 

2-dimensional Galois representation attached to a Hilbert modular form for F 

(that is, a Galois representation modular over F) is expected to be modular over 

E, this is a hard question in Langlands theory (Galois descent or base-change 

in the automorphic side has not been fully established yet; see [HM]). However 

assuming modularity over a bigger field F (without assuming that over E), we 

can prove many fine results on the adjoint Selmer groups, which we are going to 

exhibit. 

We keep the notation introduced in the earlier sections. In particular, we write 

¢~ = Gal(F(P,°~) /E), ~) = GaI(F(P,°°) /F) and A = Gal(F/E). We like to identify 

the various universal deformation rings with the corresponding Hecke algebras 

constructed out of HAlbert modular forms. We assume that Cdet = )d ~m (m E 7/~) 

for the global p-adic cyclotoInic character Af taking the geometric Frobenius 

element Frobq at a prime q ~p to N(q) and a finite order character X: ~3 -+ COX. 

We assume F to be totally real throughout this section. 

5.1. PROPERTIES OF p-ADIC HECKE ALGEBRAS. We shall define the Hecke 
? 

algebra h?(p~; O)F corresponding to the functors ~F = (I)GL(2),F for ? = n.ord, 
ord and ¢. Here we recall that  p: ~)i -+ GL2(A) E rP~'°ra(A) is called p -o rd ina ry  

if 5p,l,p is unramified. We call p p-ordinary if p is p-ordinary for all p E SL. We 

define q)~rd to be the subfunctor of (~.ord made of ordinary deformations. We 
( t )¢ ,ord  / A'~ __ ord  d~ ? put ~ i  t~J q~5 (A)NOPL(A)" Under (RGL) and (Z/) ,  (I)i: for ?. = (¢,ord) 

and ord is representable by a universal couple (RL, ~ 0L)-* 
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Let O = OF be the integer ring of F, and put Op : 0 ~Z  Zp : I]pESF O p .  We 
write Z (resp. Co~+) for the center of H = Reso/z GL(2) (resp. the connected 

component of the standard maximal compact subgroup of H(]R)). We consider 
for each open subgroup U of Z(A (~))H(~) the complex modular variety 

X (U) = H(Q)+ \H(A)+/UZ(R)C~+,  

where A is the adele ring of Q, A = A (~) x ]R, H(Q)+ = H(Q) N H(A)+ and 
H(A)+ = H(A(~))H(I~)+ for the identity connected component g(•)+ of the 

Lie group H(~). When U D Z(A(¢¢)), we may regard X(U) as a modular variety 
of ReSF/Q PGL(2). 

We define open compact subgroups of H(A (°°)) for an ideal N of F by 

(5.1) Uo(g) = {x e H(Z)] x m o d g  C B(O/N)} ,  

Vii(N) = {u E H(2) I u m o d g  E Us(O/N)},  (5.2) 

(5.3) U I ( N ) = { ( :  d ) E U 0 ( N ) I  ( :  b ) -  ( ;  ~ ) m o d N } ,  

where Z = ~It:prime Ze' B is the standard upper triangular Borel subgroup of 
GL(2)/z, and UB is the unipotent radical of B. 

We assume that the quotient field K of O contains a(F) C Qp for all field 

embeddings a : F ~ Qp. For each embedding a: F ~-~ K, we have the projection 
(~: H(Qp) --~ GL2(K). We consider the space of a polynomial representation of 
G 

L(n, v; K) ~ (~)(det(cr) v~ ® Sym ®n~ (¢)) 
a 

for the symmetric m-th tensor representation Sym ®m (a) of a: g(Qp) --+ GL2 (g) .  
We regard n and v as linear combinations of embeddings of F into K with 
coefficients n~ > 0 and v~. To make things more precise, we take L(n, v; A) to 

be the space of polynomials in {(X~, Y~)}oeI, with coefficients in an O-module 
A, homogeneous of degree n~ for each pair (X~, Y~). We let 7 E U act on 
P E L(n, v; A) by 

(5.4) ~/P( (Xo, Y~) ) = det('yp)'P( (Z¢, Ya)t a(~/p)~), 

where a ~ = [I~ a(a) ~.  
By class field theory, we may regard the character X as a Hecke character 

X: (F(°°))×/F~ --+ O ×, where F~ is the subgroup of totally positive elements 

in F ×. Let c be the conductor ofxp  in Op = [I,ipO ~. When U C Hi(c), 
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we define an action of H(Q) x UZ(A) on H(A)+ × L(n, v; K) by ~/(x, P)uz = 
(Txuz, X(Z)u~P) for u • V with u ~ = det(u)u -1, ~ / •  H(Q) and z • Z(A). The 

module L(n, v; A) with this extended action will be written as L(n, v, X; A). Note 

that  U0(c) c UZ(A(~)). Then, for U C U0(c)Z(A(~)), we define the covering 

spaces A'(U) --+ X(U) by 

(5.5) X(U) = H(Q)+\ (H(A)+  × L(n, v, X; A))/UCoo+. 

Now we consider the sheaf of locally constant sections of X(U) over X(U), 
which we write again as L(n, v, X; A). For d = [F : Q], we consider 

(5.6) S(U; A) = Hdusp( X (V), L(n, v, )t; A ) ). 

we suppose that S(U; K) ~ 0 for a sufficiently small U. 

Writing L( A ) for L(n, v, X; A ), we recall the definition of Hd~sp( X (U), L( A ) ). 
When n • 0 or d -- [F : Q] is odd, Hd~sp(X(U),L(O)) is defined to be the 

natural image of the compactly supported cohomology group Hd(x(u),  L(O)) 
in Hd(x(u),  L(K)). When n = 0 and [ F :  Q] is even, in Hd(x(u),  L(K)), we 

have the space of invariant classes Inv(U) spanned by cohomology classes of the 

connected components of X(U) (see [H88] Theorem 6.2). We then define 

Hd(x(U),L(K))).  
Hd~sp(X(U), L(O)) = Im (Hd(X(U), L(O)) --~ 

Inv(U) ] 

Once Hd~p(X(U), L(O)) is defined, we just put 

(5.7) H~,,~p( X (U), L( A ) ) = Hd,,~v( X (U), L( O ) ) ®o A. 

On this space, Hecke operators T(y) = [U( y 01)U] naturally acts ([H88] Sec- 
\ 

tion 7); further, T(B ) -- ypVT(y) preserves the O-lattice S(U;'O). We consider 

the O-subalgebra hn,v(U) of EndK(S(U; K)) generated by T(y) for all integral 

ideles y, which is an algebra free of finite rank over O. 

We define a profinite group (] by 

(5.8) G = ClF(p °~) × 0 ~ ,  

where C1F(p ~ )  = ~im j CIF(p/) is the projective limit of the strict ray class 

groups C1g(p j) of F modulo pJ. The central action (z) = z~n-2v[UzU] of z • 

Z(A(~))  is seen to be naturally contained in ha,. (U), and hn,.(U) is an algebra 

over O[[G]] via the character 

(z, y) (z)v(y). 
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In par t icular ,  if U = U0(c), (z, y) acts on S(U; K) via the charac ter  (z, y) ~-~ 

z-n-2Vy -v al though,  if n = v = 0, the space is of weight 2 with the "Neben" 

character  X in classical sense. 

We now gradual ly  shrink U according to the deformat ion type  ? in t roduced 

in the previous section to define the Hecke algebra associated to ?. There  is a 

subgroup  W ? C G associated to the deformat ion  type "?". Thus  we shall give a 

definition of the universal  Hecke algebra of type  W for closed subgroups  W C G.  

We suppose t ha t  W -- W + × W -  with W -  C O p  and W + C C1F(pe~). Writing 

~r: Z(A(°°)) -~ (Flee)) x --+ CIF(p °°) for the projection,  we put  

To each deformat ion  type  ?, we associate the following subgroup of G,  and define 

G? = G/W?: 

(5.10) W ¢'°ra = G ,  W °rd = 0~, W ~'°rd = {1}, W e = C1F(p~) .  

We look into the modula r  variety x(uW).  We see easily tha t  X(U W?) = X(U~) 
for the following groups U~ which may  look a bit different from U W? in appear -  

ance: 

(5.11) U °rd = Ul(pc~), U T M  = Ull(p~), and U 2 = Z(A)U T M .  

If  we have several proper t ies  P 1 , . . . ,  P8 giving deformat ion type,  we define 

wP~ ..... F, by the subgroup of G generated by W pi for all j .  The  condit ion t ha t  

S(u~W; K) ¢ 0 for sufficiently large a implies tha t  n + 2v = [n + 2v] ~ : F ~ a  
for an integer In + 2v]. Hereaf ter  we assume tha t  m - 1 = [n + 2v] when "?" 

involves "¢ = XAf m''. If  the p roper ty  "?" does not involve "¢",  n : (n, v) : 

(z, y) F-~ Nf/Q(z)-[n+2V]y -v factors through G ?. If  "?" involves "¢ = XAf "~'', 

the character :  (z,y) ~-~ y-V for ~ = (n,v) factors through G ?, because in this 

case, we give the O[[G¢]]-algebra s t ructure  of the Hecke algebra h(U ¢) by the 

character:  G ¢ ~ y ~-~ qF(y). 

We have a commuta t ive  d iag ram for 0 < a < fl 

s(uW; K) * S(U~; K) 

"1 "1 
s(uW; K) , S(U~; K) 

where T = qi'(y) and (z), respectively. Thus  restriction of opera tors  gives surjec- 

tive O-a lgebra  homomorphisms:  h(U~) -+ h(UW). We then define 
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which is a compact local ring well defined independently of a = (n, v). Since the 
projection maps take T(y) to T(y), we have well defined T(y) in h(UW~; 0). In 

particular, for a prime element wq of Fq (q ~ p), "~'(wq) and (wq) are independent 

of the choice of w~, which we therefore write as T(q) and (q). 

Writing h(UW~; O ) f  = [IhF hF as a product of local rings hE with maximal 

ideal mh, we write Th(y) for the projection of T(y) to hR. Then we define the 
nearly p-ordinary part of h(UW~; O)F by 

(Hecke) hW(p~;O)F= 1-I hF. 

We write in particular h?(p~; O)F for hW(p°°; O)F if W = W ?. 

For each character a = (n >_ 0, v, E, 4) : G -+ O × given by 

(z)T(y) ~ N(z)-[n+2v]e(z)y-'~(y), 

we consider the ~-eigen subspace S(U~'°"d; K)[~] of S(U~'°"d; K) for sufficiently 

large c~ so that  (c,~) factors through C1f(p a) x (O/pC') ×. Then we define the 

Hecke algebra h,~((9) by the O-subalgebra of Endc)(eS(U~'°rd; K)[g]) generated 

by T(y) and (z), where e is the idempotent of hn'°rd(p°°; O) in h(U~i°"d; 0). 
Then this algebra is well determined only by a and independent of a. 

As shown in [H89a] Theorem 2.4 (see also Lemma 3.10), we have a canonical 

morphism for a: G/W --40 × as above 

(~) hW (p °°, O) ®o[[G]],~ O --- h,~(O), 

which is a priori surjective and proven to be of finite kernel. Actually, we can 

now prove that  (a) is an isomorphism (for p >_ 3) purely in an automorphic way; 

see [H99c]. Here we are going to show the fact via the deformation theory of 
Galois representations. We write Gp (resp. Gp) for the torsion-free part (resp. 

the maximal p-profinite part) of G ?. From (a), we conclude that the natural 

map 

(G ?) hn'°"d(p ~, O) ®O[[G]],,? O[[G?]] -'~ h?(P~; O) 

is surjective and has a O[[G~]]-torsion kernel of finite type. Here if ? involves 

"¢", the above tensor product over O[[G]] is taken via the projection: O[[G]] --+ 

O[[G?]] twisted by Afm-~; for example, if ? = xAf m, the morphism re  sends 

(z,y) • G to gl-m(z)y • O[[G¢]]. This is because we have given O[[G¢]] - 

algebra structure via the algebra homomorphism: O[[G¢]] ~ h ¢ taking y • G ¢ 
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to T(y). When "?" does not involve "¢", the morphism 7r? is induced by the 

projection G -+ G ?. 

Now we list several other properties of h?(p°°; O) we need later: 

(if) There exists an O[[Gp]]-free module M ? of finite rank such that: 

(1) h?(p°°; O) acts faithfully on M; 

(2) For each arithmetic prime P = Ker(n) 6 Spec(O[[Gp]]), we have the 

local identity: h?(p~; O)p ~- M R of h?(p°°; O)p-modules; in partic- 

ular, h?(p°°; O) i s  a torsion-free O[G~]]-module of finite type; 

(3) M T M  ®O[[G]],~? O[[G?]] TM M?. 

The assertion (if) follows from [H89a] Theorem 3.8, where we have shown the 

existence of a well controlled free O[[Gp]]-module M T M  and M ¢'°~d on which 

the Hecke algebra acts faithfully. When F = Q, M ¢'°r4 is the +-eigenspace of 
• n l  

_--1 ~,o~d O) for the projector e = hm=-.ooT(p) ". complex conjugation in C I R c u s p i A  1 , 

When F # Q, to construct M ?, we need to take a division quarternion algebra 

B over F unramified everywhere at finite places and most ramified at infinite 

places, and M n'°rd is given either by Y . . . .  d in [H89a] page 167 or by the "+" 

or " - "  eigenspace for complex conjugation of yn.ord according as [F : Q] is even 

or odd. The module M ¢'°rd is constructed also similarly to the case of F = Q 

using the modular variety XB (U) for B. The same construction applies to other 

cases, using XB(U~) = ~ aXB(U~) in place of XB(Uc~ °ra) in [H89a]. 

A prime ideal P of a local ring h ? of h?(p°°; O) is called a r i t h m e t i c  if 

P A O[[G?]] coincides with Ker(n) for a n = (n, v, c, ~).with n _ 0 (~=~ no > 0 

for all a : F ¢-4 Q). For an arithmetic prime ideal P of h ?, we write O(P) 
for the p-adic integer ring of k(P) = (h?/P) ®o K. Regarding P as a point 

P: h ? --+ O(P) of Spec(t~?), we can associate to P a unique Hecke eigenvec- 

.¢~(1-fn'°rd" k(P))[n] with fl•(y) = P(V(y))fp and a Galois represen- tor fp  E _~va , 
tation pp: Gal(Q/F)  --~ GL2(O(P))  ([W] and [BR]; see also [H89b]). We call 

m o d u l a r  (of level p) if there exists a local ring h T M  of hn'°rd(p~; (.9) such 

that ~ ~ ppmodmo(p) for an arithmetic point P C Spec(hn'°rd). Hereafter 

we assume ~ is modular of level p, and write h ? for the local ring of h?(pC~; O) 

covered by h T M  under the map (G?). We assume the a b s o l u t e  i r r educ ib i l -  

i ty  of D (AIR). Under this condition, we may assume that pp itself has values 

in GL2(h?/P), and then the isomorphism class of p p  over h?/P is unique (cf. 

Carayol [Cr]). Since the projector e = l im~_~ T(p)~!: h(U~; O) --+ h?(p°°; O) 

kills the p-old part, the algebra h ? is reduced if ~ satisfies (RGF). We now list 

some properties satisfied by pp. 

(rep) We have a Galois representation p?: ~ -+ GL2(h ?) which is mhT-adically 
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continuous, and p? mod P is isomorphic to pp over h?/P for all arithmetic 

points P E Spec(h?); 

(NOp) p? is nearly p-ordinary with the property "?" and satisfies 5~,pT,p([y; p]) = 

Th (y) for y C Fp; 

(Ch) det(12 - p?(Frobq)X) = 1 - ~'(q)X + x(Frobq)N(q)(q}X 2 E h?[X] if q { p. 

5 .2 .  UNIVERSALITY OF HECKE ALGEBRAS. Here, using Fujiwara's result as a 

seed, we identify h E with the universal ring R E under appropriate conditions. 

We suppose hereafter in this section that the order of X is prime to p and ¢ = XAf 

(i.e. m = 1). Let n0 E Spec(O[[G]])(O) which is induced by the trivial character. 

By our definition, n0 factors through G ?. Then by (n), h ? ®o[[G]],~ O is an O- 

module of finite type, and its maximal torsion-free quotient h ~ is canonically 

isomorphic to the local ring of h~(O) corresponding to the deformation of ~. 

When F = Q, h ~° is the direct local summand of the Hecke algebra of weight 2 

with "Neben" character X in the classical sense. We write h ¢'°rd for h ~° because 
Cod? , ord it should corresponds to ~F " 

Let Ip,~b be the image of the inertia group Ip in the maximal p-profinite abelian 

quotient D~, b of Dp. We put IF = 1-[pcsF Ip,ab. We have a character 5 e = 

I-Ipip 51,~,p: IF --+ R E, and hence R E is an O[[IF]]-algebra via 55. By local class 

field theory, the inertia group IF can be identified with the maximal p-profinite 

subgroup of O ;  = I-[pip O~. By global class field theory, we may regard det Q? as 

a character of C1F(p ~ )  with values in R~. Thus R g also has a natural algebra 

structure over O[[G]]. 

Now we consider the following two conditions: 

(NRp) F is unramified at p; 

(LDp) F is linearly disjoint from Q(pp) over Q, and Fp x for Fp = F ®Q Qp is 

p-torsion-free. 

Then the following result is shown by K. Fujiwara [Fu]: 

THEOREM 5.1 (K. Fujiwara): Let p be an odd prime and X: ~ -+ OX be 

a character of order prime to p. Put ¢ = )iN. Suppose (NRp) for F, 

(AIf(~/(_l)(p_l)/2v)), (RGF) and that -fi is p-ordinary. Then we have 

(1) The pair of the local ring h ¢'°rd = h ~° and its Galois representation P~o = 

PKer(,~o) represents the f u n c t o r  (~'d,¢ ; 
(2) *~¢~'°rd~F :"~ '~Fl~dP'°rd . . . . .  h ~° as O[[G~d]]-algebras and h '~° "~ A/fdp'°rdm as  '~fh¢'°rd- 

modules, where M~ is the localization of M ? at the maxima/ ideal  m of 

hE; 
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(3) The ring ~Fr~'°rd is a local complete intersection. In other words, RCF '°rd ~'~= 
(9[[T1,.. . ,  Tr]] / ( f l , . . . ,  fr) for a regular sequence f l , . . . ,  fr in a formal 

power series ring of r variables O[[T1,. . . ,  Tr]]. 

According to Fujiwara, we can replace the condition (NRp) by the weaker con- 

dition (LDp) if fi is not flat at p. Irreducibility over F(X/(-1)(p-1)/2p) and linear 

disjointness of F from Q(#p) are used to find primes q outside the ramification 

of p such that  N(q) --- 1 modp "~ for any given integer m > 0 and p(Frobq) has 

two distinct eigenvalues in ]F, by the help of [DT] Lemma 3, which requires the 

surjectivity of the Teichmiiller character modulo p. They are also used, as in 

[TW] Section 2, to find an auxiliary prime ~ such that 

(1) The local components of the Hecke algebra (associated to ~) of minimal 

level and of level r added are isomorphic; 

(2) The modular variety of level ~ added is smooth, yielding torsion-free (or 

p-divisible by duality) cohomology group with coefficients in O. 

The use of auxiliary level r should be removable, in the non-flat case, taking 

a sufficiently large p-power level (to assure smoothness instead of adding an 

auxiliary level r) and then returning to level p by taking G-invariants (cf. [H89a] 

Lemma 3.10). I f~ is non-flat at p and ordinary, the local condition: #p(Fp) = {1} 

can be also removed by using fixed determinant condition: det p = ¢. If ~ is 

flat at PIP, we need to assume that p is unramified over Q, otherwise, the flat 

deformation problem is not well posed. Once the p-fiat deformation problem is 

representable by a local component of the Hecke algebra of level p removed (as 

proved by Fujiwara under the unramifiedness of p), one can proceed as Wiles 

[W] (3.11) to prove the universality of the corresponding local component of the 

Hecke algebra of p-included level for the deformation problem (ord, ¢) (that is, 

the Selmer deformation in [W]). In this process, a lemrna (due to Ribet; [W] 

Lemma 2.3) used by Wiles can be replaced by a similar one due to Taylor IT] 

Lemma 4 Case 1, when F has even degree over Q. When F has odd degree over 

Q, first take a totally real quadratic extension F~/F unramified at p, then prove 

the result over F ~, and finally descend to F as in [DHI]. Thus in tile non-flat 

case, one gets the above result over the layers Fj. In the p-flat case, assuming 

p is unramified in F,  we have the above result at the bottom F (but not over 

the layers Fj). We should mention that Fujiwara's result actually covers Hecke 

algebras with (minimal) auxiliary level outside p. Anyway we now suppose the 

assertion of the above theorem and try to generalize it for other types "?" of 

deformation: 

(univ) the pair of the local ring h ~° = h ¢'°rd and its Gah)is representation P~o = 
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PKer(~0) represents t h e  f u n c t o r  ~°Frd'¢ , a n d  h ¢ ' ° rd  ~'~ ~ / f¢ ,ord  he,oral  ~ m  a s  '~F - 

modules. 

p¢,ord is a local complete intersection over 0 .  (cpi) the local r i ng .  ~f 

Let ¢' be any continuous arithmetic character ¢': ~ --+ O × with ¢' --- 

Cmodmo.  We suppose that ¢' induces ~: G °rd ~- C1F(p ~)  --+ (.9 ×, identify- 
¢, 

ing C1F(p ~ )  with .9 ~b. For each p E B E (A), p modulo the ideal a of A generated 

b y  (~p(Cr) - ] for a E I gives a p-ordinary deformation. Every p-ordinary defor- 

mation, which is a specialization of p, is a specialization of p mod a. Thus we 

get 

F r ~ ~ o r d , ¢ '  (Isom) R ®O[[IFI] O : =~F , 

R ~  °rd ®o[[IF]] (9 ~ R°F ~d and ~o~d ~ ~ ~o~d,¢' 

Note that  h ~' is isomorphic to the subalgebra of h T M  generated by ¢' 
¢, 

where Pn.ord = Pn.ord @ (¢' det(pn.ord)-l)  1/2, without assuming (AIF). This 
follows from the following fact: ]t~ T M  ¢'~ ord ~ o r d  -- M~ ® O [ [ G p  ]], where is the = ' - r n  - - p  

maximal p-profinite quotient of CIF(p c~) (see [H99b] Chapter V Theorem 6.1, 

[n97a] Section 2 and [HM]). This shows P,.o~d = PC'" 

Tensoring characters with representations can be performed both on the Ga- 

lois side (RE) and on the Heeke side (hE), independently. Moreover, for each 

irreducible automorphic representation 7r of H(A), 7c ® ~ --- ~r for a character 

can happen only when r is an automorphic induction from a quadratic extension 

of F and ¢ is the quadratic character associated to the quadratic extension ([L] 

Chapter 11 or [DHI] Lemma 3.2). This shows 

(TP) h ..... d =~ h¢'@vO[[Gp~4]] and h ¢ ' /~  ~ h ¢'-GoO[[F]] 

on the Hecke side (cf. [H97a] Proposition 2.1 and [H99b] Chapter V Theorem 6.1). 

On the Galois side, the natural transformation O~'°~d(A) ~ ~ ~-~ ( ~ ' ,  det(~)) E 

O¢'(A) x ~ ( A ) i n d u c e s  

(TP')  R~F "°'d ~= R E ®oO[[Gp o,d and R¢ ' /~  ~= R '^®oO[[F]] 
~ v  F 

We write alF for the augmentation ideal of O[[[F]]. We have the following 

commutative diagram with surjective arrows for the arithmetic character no = 
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(0, 0, id, id): 
: R ¢ , h4) 

1 1 
iZl dp , o r d 4) 4) 

d : *~F = R F / a I F R F  * h e / a i r  h¢ 

i:~4), °rd h,o = h 4 ) '  ° r d  ~ M + b t t :  ~ F  * ° ~ F  - ~  " 

We lift 1 E h ~° TM M ¢'°~d -- M C / a l F M ~  to an element mo c M ¢. Consider 

the h4)-linear map T: h4) --+ M~ given by T(0) = 0m0, which is surjective by 
Nakayama's lemma and is injective because h4) acts faithfully on M ¢. Thus h4) 

M ¢, which is O[[GpC]]-free of finite rank. Suppose that d' is an isomorphism (~=~ 

(univ)). This implies, again by Nakayama's lemma, ~ has to be an isomorphism. 

Then by (TP) and (TP'), we further get R ~  "°~d ~- h~ "°~d. By (Isom), we also 

have R F ~ h F for ?. = "ord . . . .  , (¢', ord)" and "¢'" for any arithmetic character 

¢': .~ --+ O × with ¢~ = Cmodmo.  We can give a simpler proof of the fact: 

R~ ~ h F without using the modules M~ but assuming that Fp is p-torsion-free 

(see [HM] Section 4). We record what we have proven: 

THEOREM 5.2: Let  p be an odd prime. Let  X: ~ --+ Ox  be the Teichmiiller lift 

o f  a character with values in F ×. We put  ¢ = ) iN.  Let  ¢~: .~ -+ O × be an 

arithmetic character with ¢~ - ¢ mod too. Suppose that  -p is p-ordinary, modular  

o f  level p and satisfies the deformation property: "¢". I f  h ~° satisfies (univ), 

then for any combination ? o f  the properties: "n.ord", "ord" and "¢~", (h ?, p?) 

represents O F . 

COROLLARY 5.3: Let  the assumption and the notation be as in Theorem 5.2. 

Then  

(1) h ? is O[[Gp]]-free of  finite rank. For every ari thmetic character n = 

h ~ - ~ '~ h'% (n, v, e, 4) o f  G~ with n >_ O, we have • ¢~Of[G~]],,~ O = 
(2) More generally the morphism 

(G ?) h . . . .  h ? 

(3) 

is a surjective isomorphism. 

f f  RCF '°rd ~-- h ~° is a local complete intersection over O, then h w is a local 

complete  intersection over O[[Gp/W]] for a subgroup W c Gp with torsion- 

free G p / W ,  in other words, h w is O[[Gp/W]]-free, and 

h w O[[Gp/W]][[T1, . . . ,  Tr]]/(S1, . . . ,  L )  
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for a regular sequence f l , . . . ,  fr 6 O[[Gp/W]][[T1,.. . ,  Tr]]. 
u¢,o~d , ,  h,~o is a local complete intersection over O, then h ~ is a local (4 )  = 

complete intersection over O for any character ~: Gp ----> (9. 

Proof'. The assertions (1) and (2) follows from the proof of the theorem. We 

shall prove (3) and (4). By the assumption (cpi), we have an isomorphism 

h '~° ~- (9[[T1,... ,Tr]] / (?D. . .  , L ) .  

We write ti  for the image of T i in h ~°. Then we lift it to tj  6 h T M  SO that  

t i ® 1 = t j  under h T M  ®O[[Gp]] (9 ~ h~°. Then we define a surjective (9[[Gp]]- 

linear map 7r: (9[[Gp]][[T1,... ,T~]] ---> h ~'°rd by Tj ~-> tj. Then 

Ker(r) ®O[[G~]] (9 ~ ( ]1 , . - .  , • )  

because h '~'°~d is (9[[Gp]]-free. Then by the Nakayama's lemma, taking fi 6 

Ker(Tr) so that  f / ®  1 = ] i  under Ker(r) ®O[[Gp]] (9 ------ ( f D ' " , ] r ) ,  we have 

Ker(r) = ( f l , - . - ,  fr). Thus we see 

h ='°~d ~- O[[Gpl][[T1,..., T~]]/ ( f l , . . . ,  f~). 

Let a be an ideal of O[[Gp]]. By definition, we see 

h "'°~d ®O[[Gp]] O[[Gp]]/a ~ (O[[Gp]]/a)[[T1,..., Tr]] / ( f~ , . . . ,  f a), 

where f ]  is the image of f j  in (O[[Gp]]/a)[[T1,... ,T~]]. If 

O[[Gp]]/f l  ~- ( 9 [ [ S l , . . . , s t ,  g l , . . . , V s ] ] / ( g l , . . . , g s )  

for a regular sequence 91,.-.  ,g~, we have 

h T M  ®O[[Gp]] (9[[Gp]l/a ~- (9[[$1,.. . ,  St, U1 , . . . ,  U~, T 1 , . . . ,  Tr]] 
(91 , - - ' ,  gs, f ; ,  • • •, fr  a) 

This shows the assertion (3) (resp. (4)) by taking a to be the kernel of the 

projection: C9[[Gv] ] --+ (9[[Gp/W]] (resp. ~: O[[Gp]] -+ (.9). | 

Remark  5.1: For p 6 ~ ' ° r d ( A ) ,  we define a character 5p: IF -+ A × by 
~otp51,v,o. For each ~ = (n >_ 0,v,¢,~) as above, let ¢~ = c]~f[n+2v]og;[n+2v]6, 

where wp is the Teichmiiller character at p. Then we consider the following 

deformation functor of weight ~: 

• o(A) = coincides with t ,Pl" 
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In particular 

• ~o(A) = {p C ~F(A)I p is p-ordinary} = ¢¢'°~a(A). 

Then it is easy to conclude from h T M  ®O[[Gp]],~ O ~ h ~ that (h ~, p~) represents 

the functor (I)~ under the assumption of Theorem 5.2. Then the argument which 

proves Theorem 5.2 shows that 

( hT ,  pc. ) ==-(R 7 ,  0¢~) 

under the assumption of Theorem 5.2. 

COROLLARY 5.4: Let the notation and the assumption be as in the theorem. 

Let Spec(5) be a closed irreducible subscheme of Spec(h T M )  of characteristic 

O, and write ~: Y) -+ GL2(J) for the representation induced by Pn.ord. Sup- 

pose (univ), (cpi) and that that there exists an arithmetic point P e Spec(5). 

Then Sel*(Ad(~o))/f is a torsion J-module of homological dimension 1, and the 

following sequence is exact: 

0 ~ J[SF] --+ ~n~/n~ ® J -+ Sel*(Ad(~o))/F -+ 0. 

In other words, the first exact sequence of Conjecture 4.2 holds for ~o. 

I "~ O[[IF]] and Proof: We may assume that Spec(2) C h ~. We know RGL(2), F = 

Ro I -~ O[[Io]] for the image Io of IFo~ in IF. By the exact sequence (4.3), we have 

the following exact sequence: 

.~[SF] ~-~ flRCF/R1 @ J ~ Sel*(Ad(~))/F --~ 0. 

Since O[[IF]] = O[[Io]][[T1,...,Ts]] with s = [SF[ and ROE is free of finite rank 

over O[[IF]], if 5i is not injective, Set* (Ad(~))/F cannot be a torsion 5-module. 

Let us first deal with the case where 5 = O. Then Spec(O) is a closed sub- 

scheme of Spec(h ~) for the arithmetic character ~ induced by O[[G]] ~-+ h ~ --~ 

5 = O. Since h ~ is reduced and free of finite rank over O, ~h./O is a finite 
module. Thus by Theorem 2.3, 

Sel* (Ad(~))/F ~ ~h¢ IO[[IF]} @hV J 

'~ ~h4~IO[[IF]] ~O[[IF]] ht~ @h ~ J -~ ~h~lO ~h ~ 5 

is a finite module. This shows the injectivity of tl when 5 = O. 

In general, specializing to J / P ,  we get an isomorphism Sel* (Ad (~ ) ) /F®jh /P  ~- 

Sel*(Ad(~ rood P ) ) / f ,  which is a finite module. Thus Sel*(Ad(~))/f  is a torsion 
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J-module,  and the same argument as above proves the injectivity of t I for general 

3[. 

Now we study the homological dimension of Sel*(Ad(~))/F over J. Here if 

0 -+ Pn -+ P , - 1  --+ "'" --+ ]90 --+ M --~ 0 is a minimal projective resolution of a 

3[-module M,  the number n coincides with the homological dimension hdim$ M. 

Since 

h ¢ ~- O[[IF]][[T1 . . . .  , T r ] ] / ( f l , . . . ,  fr)  

for a regular sequence f l , . . - ,  f , ,  we have the following exact sequence: 

J J 

By tensoring J over h ¢, we get another exact sequence: 

Gzdfj 4 GJdT  Sel'(Ad( )) O. 
J J 

Since Sel*(Ad(~)) is a J-torsion module, ~ has to be injective, and thus we 

conclude 

hdimz Sel*(Ad(~,))/F = 1. 

This finishes the proof. | 

6. T h e  o r d e r  o f  t h e  t r i v i a l  z e r o  

We continue to assume that  F is totally real. We like to see the exact order 

of the zero at T = 0 of the characteristic power series of Sel*(Ad(~))/F~ for 

a modular representation ~: Y) = Gal (F(P 'c~) /F)  -+ GL2(5). We prove, under 

some conditions (including (univ)), the Selmer group Sel* (Ad(~) ) / r~  is a torsion 

J[[T]]-module of finite type with trivial zero at T = 0 of order ep = I SFI.  For that,  

we need to assume a condition equivalent to the exactness of the second sequence 

of Conjecture 4.2, which is the non-vanishing of a certain jacobian determinant 

( oT(p,)  
J = d e t \  OTj ] 

in J (Conjecture 6.2). This conjecture will be proven in Section 7 in some cases. 

Suppose that  ~ extends to ¢5 = G a l ( F ( P ' ~ ) / E )  ~ GL2(J) for a subfield E 

fixed by A C Aut (F /Q) .  Then i fp  { [F : El, it follows from the above result and 

the consideration in 4.4 that  Sel*(Ad(~) ® ~)) /E~ is torsion 5[IT]I-module with 

trivial zero at T = 0 of order ep(¢) = dim~(SomA(F[SF], ¢)) for any absolute 

irreducible representation ¢: A --+ GLm((.9) with ¢ = ¢ mod too. 
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We take a finite order character )~': ~ --+ O x and put ¢' = Xt,Afm for an integer 

ra > 0. We define a finite order character ¢ = XAf so that ¢' ~_ ¢ mod mo and 

X: 6 --+ O x is of order prime to p. By (TP')  in 5.2, we may assume Spec(J) c 

Spec(h ¢') without losing generality. In what follows, F I E  is always a Galois 

extension with Galois group A. We assume p ~ IF : E] throughout this section. 

6 .1 .  ANOTHER DEFINITION OF HECKE ALGEBRAS. A representation p: .~ -~ 

GL2(O) with det(p) = CJ is said to be m o d u l a r  n e a r l y  o r d i n a r y  (of level pOO) 

if (i) it is nearly ordinary of type {Bp} for Borel subgroups Bp C GL(2) and (ii) 

there exists a Hilbert modular form f such that 

(1) f is a Hecke eigenform of p-power level and gives the representation p; 

(2) fl'F(y) = 5p(([y, P])plp)f for all y • Fp  and all PIP, 

where [y, p] = [yp, p] is the local Artin symbol and 5p = l--[p 51,p,p: Dab ~ 0 x • 
¢, 

Then we just make the maximal quotient h = hF (C CNLo) of R F such that 

for all modular nearly ordinary deformations p: ~ ~ GL2(O) of ~, the morphism 
¢' 

t: R F --+ 0 associated to p factors through h. By definition, h coincides with 

h ¢'" 

For each modular deformation p as above, one can associate a pure rank 2 

motive Mp/F with the etale realization V(p) except for a few cases of weight 2 

([Ba]). The Hodge type of Mp ~F,a C is given by 

( n o + l + v ~ , v ~ , ) ,  (v~,,n~,+l+v~,) withn~_>0.  

By the fixed-determinant condition, n~+ l+2v~  = m for all ~: F ~ Q. Therefore 

v = ~-~,, v,,a determines n~, and m - 2v~ + 1 is the classical weight of the Hilbert 

modular form f in (2) associated to p. By near-ordinarity, we see 

~P(([Y' P])P[p) = ~(Y)Y-~' = ~(Y) 1-[ (y,,)-v,, for all y e O ;  = 1-10~ 
a: Fp--~Qp P 

for a finite order character ~. Then, under our terminology, the modular form f 

has weight n = (n _> 0, v, e, ~), where ¢' = XeA] "m (i.e. X'IIF = He). We identify v 

with a character of IF and then with a homomorphism of O-algebra v: O[[IF]] 

(9 • Spec(O[[IF]])(O). We thus have ¢' = ¢~ for ¢~ as in Remark 5.1. Then 

by Remark 5.1, (h ~, p~) represents ~ under (univ). For any irreducible closed 

subscheme Spec(5) in Spec(RCF'), a point P E Spec(5)(O) is called a r i t h m e t i c  if 

it induces a character y ~ ~(y)y~' for a finite order character ~ and v = )--~.~ v~o" 

with v~ • Z. Thus if P is arithmetic, the Galois representation ~2 mod P is 

associated to a classical Hilbert Hecke eigenform and a pure rank 2 motive. 
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6.2. CONTROL AND TORSION THEOREMS FOR THE ADJOINT SELMER GROUPS. 
We take a Zp-extension Foo/F satisfying (TR) as in Section 4 and use the notation 

introduced there. We recall that DL = l--[pcsr Dp,p,ab where D~bp is the maximal 
p-profinite abelian quotient of the decomposition group Dp at p of ~L. We write 

IL = 1-[pe& Ip,~b for the inertia subgroup Ip,~b of D~bp. We define Ij (resp. Dj) 

by the image of IFoo (resp. DRop) in IF~ (resp. DFj). By local class field theory, 

Ij is isomorphic to a p-profinite subgroup of O~p = (OR e ®z Zv) × which is made 

of universal norms from Foo,p. In other words, 

Ir,/b F, DF /Dj ~.,= sF and =~Fj 

for Pj = Gal(Foo/F) under total ramification of F~o/F at p: (TR). Thus 

O[[Iu]] = O[[Io]][[T,,... ,T,]] with s = ]SF] for parameters T , , . . . ,  T,. 
Note here that  R~ ~ O[[I3]]. Thus we have from Theorem 2.3 that 

Sel*(Ad(~o~))/Foo ~ ~R%'oo/o[[ioo] ] ®R*'~oo J" 

Here we note that O[[Ioo]] is a gigantic non-noetherian ring close to 

O[[(@pZp[[F0,p]])]]; nevertheless, we have already shown in Theorem 4.3 (see 

below) that  Sel* (Ad(~oj))/foo is a torsion J[[F]]-module of finite type if Spec(J) 

contains an arithmetic point, supposing (univ) for Fj for all j < oo. Therefore 
¢, 

Rfo ° is miraculously close to d9[[Ioo]]. Here is a direct consequence of Theorem 

4.3: 

THEOREM 6.1: Suppose (AIR), (RGF) and (univ) for F. Let Spec(5) be a dosed 

irreducible subscheme of Spec(h~') containing an arithmetic point. 
¢; 

(1) IfSel*(Ad(~oj))/F = 0, then we have h F ~- O[[IFI]. 
(2) Suppose (univ) for Fj for one 0 < j < cx~. Then Sel*(Ad(~o~))/Fo~ is a 

torsion J[[r]]-module of finite type. 

(3) Suppose that ~o F extends to ~o: ~5 --+ GL2(JI) and HomA(F[SF],~) = 0 for 

an absolutely irreducible Artin representation ¢: A -+ GLm(O). Then if 

F~o = EooF for a Zp-extension Eoo/E, 

Sel*(Ad(qoa) ® ¢) /E~ = 0 ¢==> Sel*(Ad(qo~) ® ¢) /E = O, 

and Sel* (Ad(~o) ® ¢ ) / Eoo is a torsion ~[[T]]-modnle of finite type. Moreover 

if (cpi) holds for F and ~ is a regular local ring, 

hdims[[T]] Sel*(Ad(qo) ® ¢ ) / Eoo = 1, 

and Sel* (Ad(~oa) ® ¢ ) / E~o has no pseudo-null 5[[r]]-submodule non-null. 
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Proof: If Sel(Ad(~oj))/F = 0, then flh¢,/O[[,F]] ® g = 0 and by Nakayama's 

= ~ ~ 1] lemma, [~hO'/O[[IF]] = 0 and hence h = F • 

The torsion-hess of Sel*(Ad(~oj))/F~ (the assertion (2)) follows from Theorem 

4.3 and the J-torsion of Sel*(Ad(~o~))/F, for all finite j (see Corollary 5.4). 

As for (3), under the disjointness of F[SF] and ¢,  Sel*(Ad(~oz)® ¢)/F~ is well 

controlled (see Theorem 4.4). Thus 

Sel*(Ad(~o~) ® ¢)/Foo = 0 ~ Sel*(Ad(~j) ® ¢)/F = O. 

Write M = Sel*(Ad(qos) ® ¢) /F~,  and suppose M ¢ 0. Then by Proposition 

2.4 and Corollary 5.4, M is a torsion J[[T]]-module of finite type. We know 

again from Proposition 2.4 and Corollary 5.4 that hdim s M / T M  = 1. Then by 

a theorem of Auslander and Buchsbaum ([M] Theorem 19.1), 

hdims M / T M  + depthj M / T M  = depth s J. 

Since J is regular, J[[T]] is regular, and hence by a theorem of J.-P. Serre, 

hdima[[r]] M < oo (see [M] Theorem 19.2). Again by a theorem of Auslander 

and Buchsbaum, we see 

hdima[[T]] M + depthj[[T]l M = depthj[[T]] J[[T]] = depth~ J + 1. 

Since M / T M  is a torsion J-module, depthj[[T]] M = depth~ M / T M  + 1. This 

shows that 

hdimj[[T]] M = hdims M / T M  = 1, 

and we are done. | 

To get a control result when HomA(F[SF],'¢) ¢ 0, we need to assume the 

exactness of the second exact sequence in Conjecture 4.2, since we know the 

exactness of the first. We like to interpret this exactness in terms of Hecke 

operators. We number the prime ideals over p o f F  as Pl, P2 , . . . ,  P,- As alre.ady 

remarked, IF/Io ~ F sF. Thus we (:an choose a set of parameters T1 , . . . ,  T.~ E 

O[[IF]] SO that (.9[[IF]] = O[[Io]][[T1,..., T~]]. We take a uniformizer {wi} of F m 

which is a universal norm from Foo,m = [.Jj Fj,m. Let Spec(lI) be an irreducible 

component of Spec(h0) (thus 1[ is a torsion-free O[[IFo]]-module of finite type) 

containing Spec(J). Then we write tp, for the image of 2"(~i) in 11. The element 

t m is unique up to multiplication by I0 c O[[I0]] x c ]ix. Since dtp, E ~/(9[[ir~]] 

is the image of Pi E [[SF] under the map: II[SF} --4 ~2h%,/O[[,o11 ® lI in Conjecture 

4.2, for any element r/C 1I which kills the II-torsion module Sel*(Ad(qo~))/F, 71dtp, 
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is a linear combination of dTj by the exactness of (4.5). Thus 

(or,, 
7/s det \ ~ j j ]  E II. 

¢, 
Since we have from Theorem 2.3 that, for R = R F , 

Sel*(Ad(cp~))/F ~ ~n/o[[IF]] ®R .~ 

(•R/O[[IF]] @R I[) ®~ 5 ~ Sel*(Ad(~u))/f ®~ 3, 

if S e l * ( A d ( ~ ) ) / f  is a 5-torsion module (which is true under (univ) and the 

existence of an arithmetic point in Spec(5)), we can find q as above with 7r(q) ¢ 0 

in 5. Thus we can think of 

J = l r  det \-0-~j ] ] 

in the field of fractions of 5 under these assumptions. 

CONJECTURE 6.2: Suppose (AIF) and (I~GF) [or f i r  = ~hmodm~ and that 
Spec(.~) contains an arithmetic point. Then 

J = lr ( det ( OtP' ~ 
\ OTj ] ) 

does not vanish in the field of fractions of 5, where r :  It --~ 5 is the projection 
map. 

Note that  the conjecture for J = 1[ is equivalent to the analytic independence of 

{tp, } over O[[I0]]. Since t,~ = 51,~,p, (Frob) for the Probenius element Frob C Y)F~ 

at p~, the image under the natural map: J[SF] --4 ~n~, ~ ~r ~ ® J of Pi E 5[SF] 
• . F ~ O u D . J J  

is dtp~. Thus the above conjecture is equivalent to the exactness of the second 

sequence in Conjecture 4.2. 

THEOREM 6.3: Let the notation and the assumption be as in the conjecture. 
Suppose (univ) for j = 0 and J ~ 0 and let s = ISFI. Then we have 

(1) I fSel*(Ad(~3))/g = 0 and J • j x ,  then 

nF,¢' =~ n¢~ "~= O[[Dj]], Rn°'dF~ =~ '°r,""'°'" =~ O[[Dj x Clg,(p°°)p]] 

and Sel*(Ad(~$))/F= ~ 5[SF], 

where C1Fj(p~)p is the Galois group of the maximal p-profinite abelian 
extension unramified outside p and oc over Fj. In particular, (univ) holds 
for all j > O. 
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(2) Sel*(Ad(~s)) /F~ is a torsion 5[[P]]-module pseudo-isomorphic to J~ x M,  

where 

M = fln~/O[[D~]] @n~ ~" 

Moreover M / T M  is a torsion 2-module of finite type. 

(3) Suppose that 5 is normal. Write qS(T) C ~[[T]] (resp. t~(T)) for the char- 

acteristic ideal of M (resp. Sel*(Ad(~5))/Foo). Then we have 

• ( T ) = ~ ( T ) T  ~, ~ ( 0 ) ~ 0  and ~ ( 0 ) l J  ~, 

where 71 is the characteristic ideal of the 5-module Sel*(Ad(~j) ) /F .  We 

have made use of the convention that ~b(O) = (~b(T) + (T) / (T)) .  

(4) In addition to the assumption of (3), we further assume (cpi) and that 2 is 

a regular local ring. Then the characteristic ideals in (3) are all principal, 

and we write q~(T), t~(T) and r I for the generators of the characteristic 

ideals. Then S e l * ( A d ( ~ ) ) / F ~  is a 2[[T]]-torsion module of homotogical 

dimension 1 and has no pseudo-null submodule non-null. Moreover, we 

have cb(O) = JT1 up to units. 

Proof 

(6.1) 

(6.2) 

We have two exact sequences: 

0 ~ J[SF] ~ flR~F/O[[Zo]] ® 2 --+ Sel*(Ad(~)) /F -~ 0, 

0 ® 5  O. 

From the assumption of (1) and the above sequences, we conclude 

5[SF] ~- ~R~lO[[Io]] ®~ and ~R~,/R D ®J = O, 
J 

because J E 2 x implies tha t  Im(L1) = Im(~D). By (4.2) and Nakayama's  lemma, 

we see /O[[Dj]] = 0 and thus = -~ (9 . This shows tha t  

S e l *  (Ad(~5))/F~ - -  ~O[[Doo]]/O[[Ioo]] ® 5 "~ • [ S F ] .  

The  identi ty Rn'°rdFj =~ hn'°rdFj =~ O[[Dj x C1Fj (pOO)p]] follows from (TP)  and (TP ' ) .  

This shows (1). 

We now prove (2). We may assume that  tp l , . . .  , tp~ E (9[[IF]] inside ]I, since the 

argument  with suitable modification works well without  this condition replacing 

tpj by analytically independent  t' in (9[[IF] ] N (9[[tpx tp~]] C ]L Write Rj for 
pi , ' ' . ,  

R~j, Aj for (9[[Dj]], A for (9[[Ig]] and M for f~R~/Aoo ®Roo 5. Let 

Jj  = Ker(Rj  ~ ~). 
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We have the following commutative diagram with exact rows and columns: 

(6.3) 

0 * ~Aj/O[[Ij]] ®A i J - -  ~Aj/O[[Ij]] ®A i J ) 0 

l l 1, 
( j j / j 2 )  ®~ j " ~-~Rj/O[[Ii] ] ®Rj J b , ~~[/O[[Ij]] ®~ J ) 0 

( j j / j 2 )  @~ j ' ftnj/A~ ®hi J d , gt~/A~ ®~ .~ ~ 0 

0 , 0  , 0 .  

Since J # 0 implies injectivity of f and e, from this sequence for j = c~, we have 

the following exact sequence: 

0 ~ flno~/O[[Soo]] @ J ~-~ M x (fla/o[[x0]] @~ J) -~ f~lAo @~ J -+ O, 

where a(m,  a) -- d (m) -h (a )  and fl(a) = (g(a), b(a) ). Since fl~/Ao®~a is a-torsion 

by J # 0, it is J[[T]]-pseudo-null. Again by J # O, ~D(J[SF])\(f2UO[[I @ ®~ ~) is 

J-torsion and hence is a[[T]]-pseudo-null. Since 

Sel (Ad(qo))/Foo ---- flnoo/O[[Ioo]] ® J, 

this shows the assertion. By (4.2) applied to H = D, we have M / T M  ~- 
f~no/Ao @no~ J. The latter differential module is a J-torsion module, because 

the two exact sequences of Conjecture 4.2 are both exact by our assumption. 

Thus M is a J[[T]]-torsion module, and hence Sel* (Ad(qa))/Foo is a torsion J[[T]]- 

module of finite type. 

By (2), ~ (T)  = ~ ( T ) T  8 and ¢I,(0) # 0. To see (3), we only need to prove 

• (0)lJr/. Since O[[tpl,.. . ,tp,]] C O[[IF]] inside ~ as we may assume, we see 

~D brings J[SF] inside Im(~x). Then g = Coker(~D : J[SF] ~ Im(~1)) has 

homological dimension < 1 and is J-torsion, and the characteristic ideal of N is 

generated by J.  On the other hand, we have the following exact sequence: 

0 ~ N -~ ~-~Ro/O[[Do]] ® J -~ ~-~Ro/O[[IF]] ® J "-~ 0 

from the first exact sequence of Conjecture 4.2, which holds in our case (Corollary 

5.4). Thus the characteristic ideal of M / T M  ~ f~no/O[[Do]] ® J is given by 

J~, and M / T M  has homological dimension < 1. In particular, depthi~[[T] ] M = 

depth~ M / T M  + 1. Anyway we have ep(0)[Jr/. 
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If we further  suppose tha t  J[ is regular, then hdimh[[Tl] M < c~, and therefore,  

hdims[[T]] M + depthj[[Tl] M = depth5[[Tl] J[[T]] = depth  s 5 + 1 and 

hdim~ M / T M  + depth  s M / T M  = depth  s J.  

Since we already know tha t  depths[[Tl] M = depth  s M / T M +  1 and hdim~ M / T M  

<_ 1, we conclude hdims[[T]] M <_ 1. Then  (I)(0) = J r /because  M has no pseudo- 

null module  non-null. By the exact sequence (6.2) for j = ec, we conclude 

hdims[[T]] Sel* (Ad(~))/Fo¢ = 1, 

which finishes the proof. | 

The  following result follows directly from the above theorem and Proposi t ion 

2.4: 

COROLLARY 6.4: Let the notation and the assumption be as in the theorem. 

Suppose tha t  Foo = EooF for a Zp-extension Eoo/E and ~F has an extension 

~E: ~ -+ GL2 (~). Then writing e(¢)  for the dimension o f H o m a  (F[SF], ¢)  over F 

for an absolutely irreducible Artin representation ¢: A = Gal (F /E)  -+ GLm(O) ,  

the characteristic ideal of  Sel* (Ad(9~E) ® ¢ ) / Eoo has trivial zero of  order e(¢)  at  

T = O. I f J  is regular and (cpi) holds for F, Sel* (Ad(qoE)@¢)/Eoo has homological 

dimension 1 over 5[[T]]. 

Example  6.1: Let F = Q and Fo~ -- Qoo be the cyclotomic Zp-extension. 

Suppose tha t  p is associated to a p-ordinary Hecke eigen-form f E S~"d(Fo(p)) 

(k > 2). The  condit ion ~hor~/o[[iQ]] = 0 ( ¢==~ h~rQ d = O[[F]]) is equivalent to 

the fact tha t  there is no congruence between f and any other  Hecke eigenforms in 

S~rd(ro(p))( ---- S~rd(SL2(Z)) if k > 2). This condition: gtho~/O[[iQ] ] = 0 is satis- 

fied for p = 11 and f ( z )  = A ( z ) - f l A ( p z )  e S12(ro(p)),  where A = ~ = l  T(n)q n 

is the Ramanujan ' s  function A E S12(SL2(Z)) and fl is p-adic non-unit  root  of 

X 2 - T(p)X + p11 __ 0. Thus  identifying h °~d with O[[F]] ---- O[[W]] for the 

weight variable W = 7 - 1, we can regard T(p) as a power series a(W) .  Let 

J = h °rd = O[[W]]. Then  a(~A 1 - 1) is the coefficient of f in qP, and 

J = Oa = a(7 - 1) - a ( ~  11 - 1) modms.  
O W -  p 

On the other  hand, for this f ,  we have 

a(3' - 1) = 1 a n d  a ( ~ / 1 1  - 1) - T ( l l )  = 534612 mod 1111, 
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and a(p; A) - 1 = 534611 = 7 .11  • 53- 131. Y. Maeda* has checked this non- 

divisibility by p2 of a(~/-  1) - a(~ p - 1) for p = 17, 19, 23, 29, 31, 37, 41, 43, 59, 61 

and 67. Thus for these primes, J e O[[W]] ×, and the assumption of the assertion 

(1) of Theorem 6.3 is satisfied. As for p = 53, there are two families of modular 

forms, and one of them with a -- - 1  mod mo[[w]] has non-unit 

Oa 
J = -~-~(W). 

In this case, for the cusp form f E $54(F0(53)) of weight 54 in the family, a(p; f ) +  
1 is divisible by a square of a prime factor of 53 in the Hecke field of f .  Thus in 

this case, J is a non-unit, but J ~ 0 by Proposition 7.1 (see also Remark 7.1). 

We now study a bit what we can say about the symmetric power of 

2-dimensional representations. 

Example 6.2: Let p: ~ -+ GL2(5) be a deformation of~  for an irreducible closed 
¢ 

subscheme Spec(5) C Spec(R) for R = RGL(2), F of characteristic 0. We suppose 

(AIR), (RGF) and (univ) for ~ and that 

(6.4) ~ = Symk(~) satisfies (ZF) and (RGF). 

For a positive integer k, we now put ~ = Symk(p): ~ --+ GLk+~($) and decompose 

AdsL(k+l) (~) = (~j=k 1 ~J for ~j = det(p) - j  ® Sym 2j (p). 

We consider the morphism of algebraic groups s: SL(2) -~ SL(k + 1) induced 

by symmetric k tensors. Then itsdifferential ds: V(Ad(p)) = s[(2) -+ sI(k + 1) = 

V(AdsL(k+I)(~)) induces the inclusion of V(~I) into V(AdsL(k+I)(~)) (which is 

unique up to scalar multiple). This map induces 

ds. : Sel(AdsL(2)(p)) = Sel(T1) ~ Sel(AdsL(k+l)(~)). 

We can reformulate the above argument as follows: Write (R', 6') (resp. (R, 6)) 

for the universal couple associated to (I)' ~¢k(k+~)/2 (resp. ¢ = (~GL(2),L) deforming ~GL(k+I),L 

-- ~ m o d m j  (resp. pmodmj) .  Since Symk(6) E (I)'(R), we have a unique 

morphism a: R' -~ R such that aQ' ~ Symk(6). 

commutative diagram: 

(6.5) 
k 

j[s ] 

This induces the following 

t, ! 7 r  I ' ~ j - - 1 S e i * ( ~ j ) / F  " @ j = l  T Sel* (~aj)/F~ 
~n,/o[[I~]] ®n, J--- k sel"(v~)/F~ k 

l 1 
Sel*(AdsL(2)(O))/Foo ' Sel*(AdsL(2)(p))/F, 

* ~R/O[[Io]] @R J ~- TSeI*(AdsL(2)(p))/F~ 7r 

* The author is grateful to Y. Maeda for supplying the above data. 
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and the dual a* of a gives an injection of Sel(AdsL(2)(p))/L into 

Sel(AdsL(k+l)(qa))/L such that a* = ds.. 
We have a similar result for Adsp(k+l)(~a) - -  ~ j = 0  (fl2j+l when k = 2~ + 1 and 

Adso(k+1) (~) : ~ j = 0  ~02J +1 for k = 2g+2. Thus Conjecture 4.2 tells us that the 

p-adic L-function Lp(s, ~oj) associated to Sel*(~oj)/F~ for odd j to have a trivial 

zero of order ISFI at s = 0, but it gives no information on Lp(s, ~oj) for even j .  

7. P r o o f  o f  C o n j e c t u r e  6.2 in t h e  c a s e  of  m u l t i p l i c a t i v e  r e d u c t i o n  

Define Wp C O~ by 

Wp -=- (y  E O~l The local Artin symbol [y,p] is trivial on F~,p} .  

For each subset E C SF, writing S -- SF = E O E c, we put 

gEE pE ~,,c 

Let Spec(]I) be an irreducible component of Spec(h ¢) and Spec(5) be the irre- 

ducible component of Spec(hW~(p°°; 59)) contained in Spec(ll). Here hW(p~; O) 
is the Hecke algebra defined in 5.1. 

Note that G/W~ ~ ~pc~ Fp for the inertia subgroup Fp of F at p. By (TR), 

actually Fp = F. 

We order the prime factors o fp  in F as Pl, P2 , . . . ,  Ps. 

PROPOSITION 7.1: Let X: ~3 -+ 0 × be a finite order character, and put ¢ = xAf. 
Let the notation be as in Conjecture 6.2. Suppose that Foo/F is the cyclotomic 
Zp-extension. S71ppose that at least one arithmetic point P: J --+ 0 is associated 
to a p-divisible group of (potentially) multiplicative type at P l , . . . ,  Ps-1. Then 
{t~[ i = 1 , . . .  ,s} in 5 are analytically independent over O, and hence J ~ 0 in 
$, where t~ = T(wi) - w(T(wi)) for the Teichmiiller character w: ~× -+ #q- l ($)  
with q = # (F) .  

Proof: We put Sj = {Pj+I ,Pj+2, . . . ,Ps} for j = 0 , . . . , s -  1. We write Wj 
for Wsj and put Gj  -- G/Wj  ~ [Ik>j I'pk. We write hj for hWj (pO~; O) and 

let Spec(Jj) be the (unique) irreducible component of Spec(hWj(p~; O)) inside 

Spec(]I). We have dimo 5j = s - j by construction. Thus we get the following 

sequence of surjective algebra homomorphisms (or a stratification of Spec(.~)): 

(7.1) 5 = ,]10 ~ ,~1 ~ " "  --+ 5s-1 -~40 
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and P = r~ o r~ - i  o . . .  o r l :  J ~ (9, because Foo/F is cyclotomic. 

By the multiplicative reduction assumption, P(T(wi))  is a root of unity for 

i < s. Thus replacing T(w) and ti by T(w~) h and T(w~) h - w($(~i )  h) for a 

suitable integer exponent h > 0, we may assume that P(t~) = 0 for all i < s. 

Then what we need to prove is: 

(7.2) The elements {t~ I i = 1 , . . . ,  s} in J are analytically independent over CO. 

For each 1 _< j < s - 1, we take a quarternion algebra Bj/F such that 

(1) Bj @F Fpi for 1 < i < j is a division algebra; 

(2) Bj ®F Fq ~- M2(Fq) for all prime ideals q outside {Pili <- J}; 

(3) Bj®F,a~, is a division algebra at as many embeddings a: F ~ R as possible. 

For any arithmetic point Q in Spec(Jj), the algebra homomorphism Q: Jj  --+ Qp 

is associated to a classical ni tbert  modular form fQ with fQIT(q) = Q(T(q))fQ. 

By our construction, the local component at p~ for i _< j of the automorphic rep- 

resentation spanned by f@ is a Steinberg representation, which is a image under 

the Jacquet-Langlands-Shimizu correspondence of an automorphic representa- 

tion of the algebraic group B × Thus Q(t~) = 0 for i < j .  Since arithmetic j/F" 
points are dense in Spec(Jj), we conclude rj( t i )  = 0 for i <_ j:  

Jo ---+ 51 > 52 > " " ~  58-2 - - ~  58-1 
t s  > ts  ~ ts  ) " '"  -"> $s ~ t s  

t s _  1 > t s _  1 > t s _  1 ) " '"  - ~  i s _  1 ~ 0 

t2 > t2 ~ 0 ) . . .  ----> 0 -----+ 0 

tl > 0 --+ 0 > ...-+ 0 ---+ O. 

On the other hand, tj is transcendent over (.9 in llj_l because IQ(T(wj))I = 

iw j i~,~o-1 (the modified Ramanujan bound) for all arithmetic points Q of weight 

t¢ -- (n, v) factoring through Jj ,  where a: F ~ Q "--> Qp induces pj. This can be 

shown as follows: The classical Ramanujan bound is given by 

IQ(T(wj))I  = IWjlp n~-2"~-1. 

By definition, we have V(wj )  = ~v~V~T(wj). Since Foo/F is cyclotomic, we 

know that  wj can be chosen in F C Fpj and ]w~-'~l = I~vj[ 2"~. This shows the 

identity [Q(T(wj))I = Iwj Ip "~-1- Again using the fact that Foo/F is cyclotomic, 

we know that  there are infinitely many arithmetic points factoring through 5j 

with distinct n~. Thus by induction, we see tj has infinitely many distinct values 

on the closed subscheme defined by the equation tl = t2 . . . . .  t j -1 = O, and 

hence tj is analytically independent over O[[ t l , t2 , . . . , t j -1] ] ,  which shows the 

result. | 
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Remark 7.1: By the result of [BDGP], ifSpee(h~°rd(p~; O)F) has an arithmetic 

point P associated to an elliptic curve E defined over Q with multiplica~ive 

reduction at p and if F has only one prime p over p, then with the notation in 

Conjecture 6.2, 
d'li'(wp) 

(see [GS] Section 2.4) is transcendental over Q and hence P(J) ¢ O. Thus if 

there is only one prime factor of p in F and E/Q is minimally modular over 

F associated to an irreducible component Spec(~) of Spec(h(p~; O)F), J ¢ 0 

holds for the projection It: ]I ~ J as long as P c Spec($) for closed irreducible 

Spec(5) c Spec(1[). 

8. Correction to [H96a] 

The assertions (2) and (3) of Theorem 6.3 for F = Q and p-ordinary ~o was first 

claimed in [H96a] using a method different from the one employed here. However, 

the proof given in [H96a] contains a gap stemming from a mis-statement of the 

assertion of Proposition 1.1 in [H96a]. Although the results in this paper proven 

by other methods covers the principal kssertion of [H96a], we would like to give 

the reader a description of valid assertions of [H96a] and would like to correct 

false statements there. 

We correct the statements of Proposition 1.1, Theorems 3.2 and 3.3 of [H96a] 

and give a corrected proof of them along the line employed in [H96a]. We use the 

notation introduced in [H96a]. Here is the corrected statement of Proposition 1.1 

in [H96a]: 

PROPOSITION 8.1: Suppose the surjectivity of 0 and #. Then we have the 

following canonical exact sequence of H-modules: 

TorH(B, Ker(#)) -+ C1(0; T) ®T B --+ C1 ()~; B) --~ Cl ( , ;  B) --~ 0. 

In [H96a], the first term of the above exact sequence is written as 

TorT(B, Ker(#)). The proof given in [H96a] gives the correct result without 

any change. The mis-statement of this result affects the assertions made at sev- 

eral other places of [H96a]. Here is the corrected statement of Theorem 3.2 of 

[H96a]: 

THEOREM 8.2: Suppose (AIQ), the conditions ofT) for -~ and that I[ is a torsion- 

free Ao-module of finite type giving the normalization of an irreducible component 

of Spec(P~). Let Sel~:(Ad(~) ® u-1)/Q be the Pontryagin dual module of the 
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Selmer group SelL(Ad(~) ® u-1)/Q. We have the following two exact sequences 

of I-modules: 

Sel~,(Ad(~) ® u-l) /® -~ CI(Aj; [) -~ O, 
®zp rj  L~ (~P~ _ 1)Sel~,(Ad(~) ® v-l)/® 

C1(7r~; [0) @~o [ ~ Sel~vv (Ad(~ °) ® u-l) /® -+ ]I -+ 0. 

Moreover suppose that RQ is reduced and either that RQ is a A-module of 

finite type or that Spec(lI0) is an irreducible component of Spec(RQ). Then 

ej is injective. 

In the original version in [H96a], it is claimed that Ker(~o~) is a pseudo-null 
]i[[F]]-module, which does not immediately follow from the method employed in 

[H96a]. Thus the analysis of Ker(~j) given from the line 10 from the bot tom of 

page 105 of [H96a] to the line 16 from the bottom of page 106 does not stand as 

it is. Removing this part from the proof, we get the corrected assertion. 
We also need to correct the assertion of Theorem 3.3 in [H96a]. Here is the 

corrected one: 

THEOREM 8.3:  Suppose (AIQ), (Ind), that [ is a torsion-free A-module of finite 

type giving the normalization of an irreducible component of Spec(P~) and that 

Sel~,(Ad(~))/Q is a torsion ]l-module. Then we have 

(i) Sel~,  (Ad(~)) ® u-l) /® is a torsion [[[F]]-module of finite type; 

(ii) There is a pseudo-isomorphism of Sel~, (Ad(~)) ® u-l) /® into M x ]i for 

a torsion ]I[[F]]-module U = CI(A~; I[) such that M / ( 7 -  1)M is a torsion 

]i-module; 
(iii) I f  Sel~,(Ad(~))/Q is a pseudo-null Lmodule and A' = [, then 

Sel~  (Ad(~))® u -1)/Q is pseudo-isomorphic to [, on which F acts trivially; 

(iv) If][o is formally smooth over 9 ,  then we have the following exact sequence 

of [[IF]I-modules: 

0 -~ C~(~o~; ]i) -~ C~(,~';  ~) -~ ~ / A ,  -* 0, 

where ~ / A ,  is the module of continuous 1-differentials or equivalently is the 

mu-adic completion off~/A, (which is a torsion [-module of finite type by (Ind)). 

Originally M is claimed to be pseudo-isomorphic to Cl(~r~; .[o)®~o [ in the 

assertion (ii). This is true if ~o is formally smooth over i3, and in this case, M is 
isomorphic to C1 (Try; [o)®no ~; otherwise, the proof given there does not immedi- 
ately show the pseudo-isomorphism. The two arguments given after Theorem. 3.3 

c~ ( ~ ,  [) in [H96a] proving the control of C1 (A~; lI) and the lI[[F]]-torsion-ness of ' " 
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are correct. However, the argument from the line 19 of page 109 of [H96a] to the 

line 3 from the bo t tom of the same page, relating CI(A~;  ][) and Cl(~roo; ][) @~o ][ 

up to I[[[F]]-pseudo null modules, is incorrect. The result holds when l[ is formally 

smooth as later proved in [H96a] pages 112-113. To recover the result (ii), we 

need to show that  

0 --} Y --~ Cl()~oo; T[) ~ CI( )~L;  ][) -~  0 

is exact for an ][[[F]]-torsion module Y. This can be done as follows: Note that  

CI(A};I[) -~ ~tus/h, ~ ®R~ ~ and CI(Aj;I[) ~ ~Rj /h j  ®Rj [. 

We have by definition Ao~ - D and A~ ~- D[[X]] by (Ind) of [H96a] page 107. 

Then the exact sequence: 

][ ~ 5D[[X]]/D ®D[[X]] ][ -4  5 R ~ / A  ~ ®R~ ]~ -'+ 5Roo/A~ ®Roo IT -~ 0 

shows that  Y is the image of l[, which is a torsion ][[[F]]-module. In this way, we 

can recover the assertion of Theorem 3.3 in [H96a] as stated above. 

Here we list minor mistakes and misprints in [H96a]: 

page 92 (Ext2): Torl B' should read 

page 100 line 6: T = RE ®A'~ 1[ should read 

page 105 (Ext5-6): Tor Tj should read 

page 116 lines 13: c(hT)c(T) should read 

page 127 Proposition A.2.3: 

TOrl T' for T '  = T QA B 

T = RE ®h, F ][ 
Tor Tk 

c(hT) = ~r(h)c(T) 

Remove yix,ord from the statement.  ~ e  
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