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ABSTRACT

We fix a prime p. In this paper, starting from a given Galois represen-
tation ¢ having values in p-adic points of a classical group G, we study
the adjoint action of ¢ on the p-adic Lie algebra of the derived group
of G. We call this new Galois representation the adjoint representation
Ad(p) of ¢. Under a suitable p-ordinarity condition (and ramification
conditions outside p), we define, following Greenberg, the Selmer group
Sel(Ad(¢));r for each number field L. We scrutinize the behavior of
Sel(Ad(¥))/p,, as an Iwasawa module for a fixed Zy-extension Eo/E
of a number field E and deduce an exact control theorem. A key in-
gredient of the proof is the isomorphism between the Pontryagin dual of
the Selmer group and the module of Kahler differentials of the universal
nearly ordinary deformation ring of ¢. When G = GL(2), ¢ is a modular
Galois representation and the base field E is totally real, from a recent
result of Fujiwara identifying the deformation ring with an appropriate
p-adic Hecke algebra, we conclude some fine results on the structure of
the Selmer groups, including torsion-property and an exact limit formula
at s = 0 of the characteristic power series, after removing the trivial zero.
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1. Introduction

Let O be a discrete valuation ring (with maximal ideal m = mp) finite flat over
Zy, for a prime p. Let G C GL(n) be either GL(n) 0o or a split similitude group
defined over O by a symmetric or symplectic form. Let J be a local complete
noetherian integral domain over O sharing the same residue field F with O. Start-
ing from a continuous Galois representation ¢: Gal(Q/E) — G(J) for a number
field E, we let the Galois group act on the Lie algebra s, of the derived group S
of G via adjoint action, getting the adjoint representation Ads(y): Gal(Q/E) —
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GL(s). Suppose that ¢ factors through & = Gal(F(®>)/E) for the maximal
extension F(P*)/F unramified outside p and oo, where F/E is a finite Galois
extension F/E with pt [F : E]. Further suppose that ¢ is nearly ordinary at p in
the following sense: ¢ restricted to a decomposition group D, at a prime p|p has
values in a (proper) split parabolic subgroup P, of G. Thus ¢ restricted to D,
leaves stable a flag F : 0 = Vo(p) C Vi(p) C ... C Vi, () = V(p) of the space
V() of p. We write d;, for the representation of Dy on Vj(p)/Vj_1(p). The
Lie algebra n, C s of the unipotent radical of P, N S is stable under D,. Now we
can define, following Greenberg, the adjoint Selmer group Sel(Ads(¢) ® ¥),y, for
any Artin representation ¢: A = Gal(F/E) — GL(V) & GL,,(O) and a subfield
L c F(P>) by

Sel(Ads () ® ¥),1, = Ker(H (L, (s ®0 V)*)

- HHI(I;:’ (s®0 V)*/(np ®0 V)*)),
plp
where $, = Gal(F(®»*)/L), I, is the inertia subgroup at plp in $z, and M* for a
J-module M is given by M ®;J* for the Pontryagin dual J* of J. Even though we
have restricted ourselves to either GL(n) or similitude groups, our result actually
covers any central extension 7 : G — G, because we have Adg () = Adg(p) for
any Galois representation @: ® — G(J) with ¢ = 7 o @. In particular, our result
is valid for metaplectic covers of GSp and spinor groups GSpin.

In this paper, we study the Iwasawa theory of Sel(Ads()®%), g, for a fully p-
ramified Z,-extension E,/E. We view the Pontryagin dual Sel*(Ads(v)®%),k,,
of Sel(Ads(¢) ® ¥)/E,, as a module over the Iwasawa algebra J([I']] for I' =
Gal(Ew/E) = (v) and study its module structure over J[[T']] = J[[T]] (T = v-1).

Since the group G is split reductive over O, the conjugacy class of the split
parabolic subgroup P, is represented by a unique standard parabolic subgroup
Py containing a fixed (split) Borel subgroup B of G. The Borel subgroup B is
determined by a unique (maximal) flag F of subspaces of V(). Any standard
parabolic subgroup is a stabilizer of a unique flag whose subdivision gives rise
to F. Therefore, if B, = g, Fgy . then the flag gpF is a subdivision of the
flag Vo(p) C Vi(p) C ... C Vi, (¢). The Selmer group defined above depends
on the choice of P, (and hence on the choice of the flag). For a given ¢, there
could be several choices of P,. The choice of minimal P, would be a canonical
one, although we do not care much in this paper which choice we make (except
in our conjectures for which we make the hypothesis on ¢ that P, is a Borel
subgroup). We may regard €D, 6;,» as a representation of Dy into My (O) for the
Levi-quotient My, = P, /Ny, where N, is the unipotent radical of P,.
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In the above definition of the Selmer group, we have assumed that the ramifi-
cation in g outside p is rather limited to a finite extension F/E with p{ [F : E],
basically covering potentially unramified (outside p) cases. Thus we do not touch
in this paper the case where some primes ¢ { p semi-stably ramify in the repre-
sentation . When G is bigger than GL(2), the primes q ramify semi-stably in
many different ways. Different types of ramification might require separate treat-
ment. Since this paper inaugurates a general treatment of adjoint Selmer groups,
we decided, at least for this paper, to avoid further complications coming from
allowing infinite ramification outside p. We hope to come back to more general
cases of ramification, if one can find anything new and interesting in more general
cases.

If ¢ is the Galois representation of a pure motive M defined over E, we can
define a motive Ads(M) to which Adg(¢p) is associated. Its L-function is expected
to satisfy the functional equation of the form s & 1—s. If Ad(M)®% is p-ordinary
and is critical at s = 0 and 1, then F is totally real and P, is a Borel subgroup.
Suppose that M is regular (that is, all Hodge components of M have dimension
< 1). There is a good reason to believe that L(1, Adg(M)®) # 0, which is true
if ¢ is associated to a cuspidal automorphic representation of GL(n),r. Thus
if (i) Ad(M) ® ¢ is critical, (ii) P, is a Borel subgroup and (iii) M is regular,
the Selmer group Sel(Ad(M) ® ¢),g should be finite, and we expect that the
Pontryagin dual Sel*(Ads(p) ® ¥),g., is a torsion O[[T]}-module of finite type,
because its specialization at an arithmetic point tends to give Sel*(Ad(M) ® v¥)
up to J-torsion error (see (1) and (2) below). Even if F' does have some complex
places, we believe (the Pontryagin dual of) the Selmer group to be torsion as
long as P, is a Borel subgroup and M is regular (see [H99a] Section 5). More
generally, if Adgs(p) is arithmetic (that is, Spec(J) has densely populated points
P such that Ad(y)mod P is associated to a critical pure motive) and P, is a
Borel subgroup (for all p|p), we expect that Sel*(Ads(¢) ® ¥),/g,, is a torsion
J[[T]]-module of finite type.

Heuristically, if there exists a p-adic L-function Lp(s, Ads(M) ® ¢), the order
of zero at s = 0 should be equal to the number of linear Euler p-factors vanishing
at s = 0, because we expect to have L(1,Ad(M) ® ¢) # 0 as described above.
The number of such Euler factors can be computed as follows: Let S, be the set
of primes of F over p|p in E, on which A acts by conjugation. We consider the
formal A-module F[S,] generated by elements of S, over F. Let e, () be the
multiplicity of 4 = ¢y modm in F[S,]. Assuming that M is crystalline at p and
counting the multiplicity of 1 in the eigenvalues of the crystalline Frobenius, we
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conclude that the number of such linear Euler p-factors of L(s, Ad(M)®1) should
be e, (¥)ry,, where 7, is the split rank of the center of the Levi-subgroup of P, NS.
Thus the number of such linear Euler p-factors should be e = 3, ex(¥)ry (see
4.3).

Under not so restrictive conditions we will describe later in this section, we

shall prove the following assertions (see Section 4, in particular Theorem 4.4):
(1) We have, if e = 0,

Sel*(Ads(p) ® ¥) /.,
T Sel” (Ads(p) ® ¥)/E.,

2) In general, we have the following exact sequence:
g

Sel*(Ads{y) ® ¥)/g.,
T Sel*(Ads(p) ® ¥) k.,

We conjecture thateis injective (Conjecture 4.2) and thatSel*(Ads(v)®¥) 5.,
is pseudo-isomorphic to a product of J¢ and a torsion J{[T']]-module M without
trivial zero at T = 0, as long as P, is a Borel subgroup and Ads(y) is arithmetic
([H97a]). This arithmeticity essentially forces ¢ to have values in GSp(n) or
GO(n) if n > 2 (see Example 2.7 and Example 2.8).

A sufficient condition to have control with finite error, similar to (1), has
been given by Ochiai for general crystalline Galois representations without triv-

= Sel*(Ads () ® ¥)/5;

Je 5

— Sel*(Ads(¢) ® ¥)/g = 0.

ial zero (that is, the crystalline Frobenius does not have the eigenvalue 1; see
[O)) by a different method. For example, one starts with a 2-dimensional rep-
resentation ¢: & — GLy(O) and makes a symmetric power Sym*¢: & —
GL441(0O). Ochiai’s result gives a control theorem (with finite bounded error) for
Sel(det(p)? Sym*(p)) for odd k, when ¢ is associated to a critical 2-dimensional
pure motive ordinary at p. On the other hand, since AdSL(kH)(Symk(cp)) =
@;zl p; for p; = det(p)™7 Sym? (i), our result in essence takes care of sym-
metric even powers of ¢ (see Examples 4.1 and 6.2). This work of Ochiai also
deals with the Selmer groups of Bloch-Kato for critical crystalline motives M
satisfying the Panchishkin condition.

Suppose G = GL(2), F is totally real and Spec(J) is an irreducible closed
subscheme of Spec(h™°"¢) for the universal nearly ordinary Hecke algebra h™o"4
for GL(2),r. Then, under suitable assumptions, the Hecke algebra represents
the (nearly ordinary) deformation functor deforming the representation pp =
pmodm of . This follows from a recent work of Fujiwara generalizing an
earlier work of Wiles-Taylor and Diamond for F = Q (see Section 5). From this,
we can conclude (Theorems 6.1 and 6.3), under suitable assumptions, that
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(I) Sel*(Adgr(2)(w) ® ¥)/E is a torsion J-module of finite type and has no
pseudo-null J-module non-null;

(IT) The map ¢5 is injective;

(II) Sel*(Adsy(z)(#) ® ¥)/E., is a torsion J[[T]]-module of finite type;

(IV) If e = 0 and J is a regular local ring, then Sel*(Adsy(2){¢) ® ¥),g., has no
pseudo-null J{[T']]-module non-null.

Let O be the integer ring of F, and we put O, = O ®z Z,. Then we write
Iy C Oy for the subgroup made of universal norms from Foo/F (Foo = ExoF).
Then O;,‘ /I = T'5F for the set Sp of all primes of F over p. We number elements
in Sg aspy,...,p, for s = |Sr|. We write Cl{(p®) for the Galois group of maximal
abelian extension of F unramified outside p and co. Then A™°"¢ is an algebra
over the Iwasawa algebra O[[G]] for G = Cl(p*°) x O). Therefore, if we write
O[[G]] = O[[CL(p™) x Io)|[[Ty,- .., Ts]] for parameters T; with s = |Sp|, we can
think of the jacobian determinant

_ OT(pi)
3= det ()
in h™°r4 for Hecke operators T(p;). If Spec(J) C Spec(h™°"?), the existence of
the conjectural pseudo-isomorphism of the Selmer group into J¢ x M as above is
equivalent to the non-vanishing of the image J of J in J. If J is a regular local

ring, assuming that J # 0, we shall show that
V) Y(T) =T°®(T) with ®(0) = Jn € J up to units

for the characteristic element 1 € J of Sel*(Adsy(2)(¢) ® ¥),g and for the char-
acteristic power series ¥(T') € J[[T7]] of Sel*(Adsr(2)(¢) ® ¥),g., (Theorem 6.3).
We also prove the non-vanishing: J # 0 for the cyclotomic Z,-extension F /F if
Spec(J) is sufficiently large and contains a point P whose Galois representation
¢ mod P is of multiplicative type at all but one p-adic place {Proposition 7.1}.

To prove the above assertions, we have exploited an idea of Mazur, that is,
the identification of the Selmer group with the module of Kahler differentials of
the global universal deformation space of 5y, = ¢|s, modmy over the local one
(Theorem 2.3), where my is the maximal ideal of J. Here we call a representation
p: 91 — G(A) for an Artinian local O-algebra A with residue field F a deforma-
tion of p;, if p = Py, modmy for the maximal ideal my of A. Thus we need to
assume the representability of the deformation functors, which follows from the
following conditions:

(Zr) For any deformation p: Hr — G(A) C GL,(A) of pg, if zp = pz for

z € GL,(A), then z is scalar;



Vol. 120, 2000 ADJOINT SELMER GROUPS AS IWASAWA MODULES 367

(Zp,r) For any deformation &: I, = GLy,(A) (for all p|p) of §;, = 6;, mod my,
if 6 = 0z for x € GL,(A), z is scalar, where I, is the inertia subgroup
of Hr;

(Regr) HO(D,,5/(sN\Py)) = 0 for the Lie-algebra P, of P, for all prime p|p.

The conditions (Zg) and (Z, ) follows from the absolute irreducibility of the
corresponding F-residual representation, but there are many examples of residual
representations satisfying these conditions which are not absolutely irreducible.
Similarly, (Regr) follows from Homp, (8;5,0;,,) = 0 for all p and i # j. We need
to assume one more technical assumption for the validity of the assertions (1)
and (2):

(EP) pi2n[F : EHHdlméjp

p j=1

At this moment, for the validity of Fujiwara’s result for GL(2),r quoted above,
we need to assume the following conditions:

(AL) Py Hx — GLo(F) is absolutely irreducible for k = F(y/(—1)(P—1/2p);
(LD) F is linearly disjoint from Q(,u,,) over Q, and O} is p-torsion-free;
(NR) F,/Q, is unramified if p is flat at p.

Thus, for the assertions stated above concerning Spec(J) C Spec(h™°?), we need
to assume (Aly), (LD) and (NR) (or simply the universality of A™°"¢: (univ) in
5.2). The condition (Aly) follows from the absolute irreducibility of Adgy(2)(Br)-
Since § C G is simple, Ads(pg) is absolutely irreducible for a representation
7: Hr — G(F) with sufficiently large image.

Since Fujiwara’s formulation of the method of Taylor-Wiles is formal, we ex-
pect its generalizations to more general groups G in near future (some cases have
already been dealt with by Harris-Taylor [HaT]). Once we have the identification
of the (nearly ordinary) Hecke algebra of the Langlands dual G of G with an
appropriate global p-adic deformation ring of p, we should be able to get state-
ments similar to I-V (from (1)—(2)) for more general G rather than just GL(2),/p.
This is the reason why we have treated general split classical groups G.

When F' = Q, the universal ordinary Hecke algebra ho"¢ is finite flat over
O[[W]] for the weight variable W, and h™°"® = h°T¢[[T]]. When J is an irreducible
component of Spec(h?™®), we constructed in [H90] a p-adic L-function L,(W,T) €
TJ{[T]] associated to Adgy2)(p) and the Z,-extension Q. Hence, we have a
main conjecture asserting the identity: L,(W,T) = ¥(T') for ¥(T) as above.
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Greenberg and Tilouine have shown the congruence
Ly
?(0, 0) = Jpmod P

if an arithmetic prime P of J is associated to an elliptic curve with multiplicative
reduction at p. Under some (standard) conjectures on Siegel modular varieties
with some addtional hypothses, Urban has shown the divisibility: L,|¥; so, the
main conjecture: ¥ = L, follows from the assertion (V) and the non-vanishing:
J #Z 0mod P ([BDGP]) in this (elliptic curve) case (see [HTU] and [U] for more
details). After the solution of this two-variable main conjecture, the one-variable
version for an elliptic Hecke eigen cusp form f automatically follows, because
s = Lp(w,~y*—1) for a suitable specialization W +— w € O gives the canonical (or
genuine in the terminolgy of [H97b}) p-adic L-function L,(s, Ad(f)) of Ad(f).
This canonical p-adic L-function differs by a constant ¢ from the cyclotomic
p-adic L-function for Ad(f) constructed by other authors, if f has non-trivial
congruence modulo p with other elliptic cusp forms. Here 7y is the order of
the congruence module of f. There is no doubt that the construction in [H90]
generalizes to the Hilbert modular case.

In Section 2, we describe various Selmer groups and study relations among
them. In Section 3, we study base-change of the deformation rings, and in Sec-
tion 4, we prove the assertions (1) and (2). In Section 5, we recall basic facts
from the theory of Hecke algebras for GL(2) and deduce the universality of the
Hecke algebra from the result of Fujiwara [Fu]. The assertions I-V will then be
proven in Section 6. In Section 7, we prove the non-vanishing: J # 0 in almost
multiplicative reduction case. At the end, we shall give corrections to the result
in [H96a], although we do not use in this paper the assertion mis-stated there.

This paper supersedes my earlier preprints [H97a] and [H97h]. The principal
idea of this paper is similar to the idea described in [H97a] for F = Q and
G = GL(2) (which is not for publication, except for some parts reproduced in
[H99b] Chapter 5 and is slightly different from the method of [H96a]). The
idea has been fully developed in this paper to include classical split groups G.
After having written [H97b], I realized that the argument works well for general
classical groups G and symmertic even powers ¢;, and this paper is the outcome
of the endeavor.
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Section 1
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2. Various adjoint Selmer groups

2.1. DEFINITION. We begin with the definition by Greenberg of the Selmer
groups we like to study. Let F/E be a Galois extension of number field inside a
fixed algebraic closure Q of Q. We fix a prime p { [F : E]. We write F(»®)/F
for the maximal extension of F' unramified outside {p,oc0}. Let J be a p-adic
pro-artinian local O-algebra with finite residue field F, and we take a Galois
representation ¢: ® = Gal(F{®>)/E) — GL,(J). We write V = V() for the
representation space of ¢, which is a J-free module of rank n. Let Sg be the set
of prime factors of p in E. For each p € Sg, we fix a decomposition subgroup D,
in . We assume that we are given a Dy-stable filtration:

(fL)  0=V(p)op C V(P CV(P)2p C - CV(@)m,p = V(p),

where we assume that V()/V(g);p for all j =1,...,my — 1 are all J-free. The
stabilizer of this filtration gives rise to a conjugacy class of a parabolic subgroup
P, of GL(n). We call the representation ¢ nearly ordinary of type F = {P,},
and call F the nearly ordinarity datum for ¢. When all P, are Borel subgroups,
we call ¢ (nearly ordinary) of Borel type. We write §;, , for the representation
of Dy on V(¢);p/V(¢)j-1,p- If ¢ is of Borel type, §;,p is a character.

We fix one step 0 < j < m. We write §, for the representation of Dy
on V(p);p = V(d;). We call such a datum a local Selmer datum S =
{V(é4)}pes- Then we consider the Pontryagin dual J-module

J* = Homgz (J, Q,/Zy).

For each J-module X, we define X* = X ®; J* and let & or its subgroup act on
X* through the left factor if X has an action of the subgroup. We consider the
Galois cohomology group H(®,V(p)*), which is a discrete J-torsion module.
Then we define, writing $;, = Gal(F(»>)/L) for each intermediate extension
F®®)/L/E, the Selmer group with respect to S by

(Sel) Sels(¢)/1 = Ker(H (51, V(9)*) = [[ H' T, V6",
peSL

where V(6§) = V(¢y)/V(65,), Iy is the inertia subgroup of the decomposition
group D, C $r and the map is the restriction composed with the projection:
V(p)* = V(6},)*. We can define the strict Selmer group Sels () replacing
I, in the above definition by Dp.



Vol. 120, 2000 ADJOINT SELMER GROUPS AS IWASAWA MODULES 371

Example 2.1: Let F/Q be a quadratic extension (so E = Q) and x : Gal(F/Q) =
{£1} be the unique non-trivial character. We may regard x as having values in
Ly for p > 2. We take V(6]) to be the full space V(x). Then Sel(x)/q is
isomorphic to the p-part Clp, of the strict class group of F'. This can be proven
as follows: By Inflation-restriction sequence, we have

HY(6,V(x)") = H'(%,V(x)")x] ¥ Home (9, V(x)"),

»

where “[x]” indicates the x-eigenspace. Then the above isomorphism induces

Sel(x) £ Hom(Clrp, V(x)*) = Clp,p .

The isomorphism « follows from class field theory, and the last isomorphism
holds because Clpp[id] is trivial (that is, Z is a PID!). More generally, taking
a finite cyclic extension F/Q of degree n with p { n and let x: & = u, C O
be a character such that F = LKe*&) for [ = F(>)  Then for the choice:
V(6F) = V(x), the Selmer group Sel(x),q is isomorphic to the x-eigenspace of
Clp,p ®Z,,O-

Example 2.2: Let E = Q. Let £,g be an elliptic curve with ordinary good
reduction at p > 2. We suppose that £ acquires everywhere good reduction for
a finite extension F with p { [F : Q). The Tate module T,(£) has a natural
filtration:

0 = Tp(E°) = TH(E) - TH(E*) — 0.

Here £¢ (resp. £°) is the connected component (resp. the maximal étale quo-
tient) of the p-divisible group of £. We take V(i) to be T,(£) and V(5;) to be
Tp(£¢%). We write Sel(£),, for Sel(y),/, for this p. Then by Kummer theory for
£, we have an exact sequence:

0—£(Q) ®z2 Qp/Zy — Sel(€) g = ITI(E) o — 0.

Here III(£) q is the p-primary part of the Tate-Shafarevich group for £ over Q.
We refer details for this type of Selmer groups to Greenberg’s exposition [Grl]
Section 2.

Example 2.3: Let f € S(I'o(C), x) be a Hecke eigenform for a “Neben” Dirich-
let character x of conductor C. Write f|T(n) = A(T'(n))f for a system of Hecke
eigenvalues A(T'(n)), and let Q(A) be the number field generated by A(T'(n)) for
all n. Take a prime ideal p|p of Q(A), and let O be the p-adic integer ring. Then
we have a Galois representation ¢: & — GL2(O) associated to A characterized
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by the fact: Tr{p(Frobg)) = A(T(£)) for all primes £ { Cp. We further suppose
that A(T'(p)) € O%. Then V(p) has a natural filtration:

0=V (6,) > V(p) = V() =0

stable under D, (cf. [MW] and [Ti]). Here ranko V() = 1. We suppose that
the order of x is prime to p > 2. Then we take E = QQ and F' to be the cyclic exten-
sion of Q such that ¥ : Gal(F/Q) = Im(x) for the Galois character X associated
to x by class field theory. We can think of Sel(),q as in the previous example,
but here we look into Sel(Ad(p)),q. We let & act on M5(0) = Endo(V(p)) by
conjugation. Then the subspace V(Ad(yp)) C M2(O) made of trace zero matrices
is stable under the action. In this way, we get a three dimentional representation
Ad(p). The one dimensional subspace

W = {p e Bndo (V)] o) =66 =0} = {(§ 3)} € Viadw)

is then stable under D,. We define the Selmer group Sel(Ad(y)),q taking
20N d( (p),p) to be V(Ad(p))/W. This Selmer group has been studied in depth
by Wiles in [W], and Wiles’ work combined with an earlier result of mine yields:

T'(1, Ad(X)L(1, Ad(N) |~
Q(+, A, A)Q(=, A; 4)

| Sel(Ad(¢))/ql =

P

Here A = Q()\) N O is the discrete valuation ring of Q(A) (induced by O),
the *-periods Q(z,\; A) are the normalized +-periods of f with respect to
A, and L(s,Ad()\)) = L(s, Ad(y)) is the adjoint L-function of A with I'-factor
['(s, Ad())). We refer to [H99b] Chapter V Section 3, [H96b] Section 2.9-10 and
[DHI] the details of these periods and the L-function.

Example 2.4: We can think of a more general setting than the above examples.
Suppose that F = Q, J = Z, and that ¢ is the etale realization of a rank n pure
motive M/q crystalline at p. We suppose that M is critical. Thus there is the
middle term of the Hodge filtration F~(M) C Hpgr(M). We then assume that

V(8,) is sent onto F~ (M) by the p-adic comparison isomorphism. If L(0,M) #

0, we expect that | Sel(y)| is finite and is related to |W—) |1, where ct (M)

is the period normalized with respect to V'(§,) and F~ ( ) (see [H96b] Chapter

3). Under the notation of Example 2.3, V(¢)®z,Q, is the p-adic étale realization
of a rank two motive M of Hodge weight (k—1,0) and (0, k—1). We can then split
M ® MY = Ad(M) @1 for the rank 3 adjoint motive Ad(M), where MV is the
dual of M. Then the subspace W in Example 2.3 corresponds to F*(Ad(M)) =
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F~(Ad(M)(1)) under the p-adic comparison isomorphism (see Example 2.7 and
[H96b] Section 3.2). Then c¢f (Ad(M)(1)) = Q(+, A; A)Q(—, X; A) up to elements
in QA)* (and a power of (2mt) to cancel the (27i) from the I-factor). The
Q-periods are normalized so that ¢} (Ad(M)(1)) is a p-adic unit.

2.2. CHARACTER TWISTS. Let Ey/FE be a Zp-extension with I' = Gal(E« /E)
& Z,. We have the tautological character x : I' < Zg[[I']]* for the Iwasawa
algebra Z,[[I']]. Fix a generator y € I'. Then we can identify J[[I']] with a power
series ring J[[T]] so that (y) = 1 +T. We regard & as a character of ® and then
consider ¢ ® k: Gal(F(P*®)/E) — GL,(J[[T]]). We want to relate Sel(y ® x),g
with respect to {V (6; ®«)}, and Sel(p), g, with respect to {V (6, )},. As proved
in [H96a] Section 3.1, we have

PROPOSITION 2.1: We have Sel(p ® k)/g = Sel(y) /g, -

Thus we may consider J{[I']] as the coefficient ring of Sel(¢ ® k)&, and Green-
berg has conjectured that Sel*(yp ® k), g is a torsion module over its coefficient
ring J[[T']] if the associated p-adic L-function does not vanish ([Gr] Conjecture
4.1).

Example 2.5: We keep the notation of Example 2.1. Thus x is a character
inducing Gal(F/Q) 2= pu, C O*. Let E, = Qx be the cyclotomic Zp-extension.
We suppose that x is an odd character. We write k : ' = Gal(Qu /Q) <«
O[[[']] for the tautological character. We then regard xx as a character of &
having values in O[[T]]*. Then taking V(§;}) to be the full space V(xx), we
have Sel(xx),p = Sel(x)/q.- The Pontryagin dual Sel*(x),q,, is the classical
Iwasawa module studied by Iwasawa (see Introduction of [Gr1]).

Example 2.6: We keep the notation in Example 2.2. The study of the Selmer
groups Sel(£) g, (and Sel(€) g, ) was initiated by Mazur (see [Grl]). In partic-
ular, if £ is modular (that is now known to be true for almost all rational elliptic
curves by Wiles and others), Mazur constructed a p-adic L-function of £, (see,
for example, [H93] Chapter 6), and he conjectured that the characteristic power
series of Sel(£) g, is given by the p-adic L-function ([Grl] Conjecture 1.13).

2.3. ADJOINT GALOIS REPRESENTATION. We now let & act on M,(J) by
conjugation: = — ¢(o)zp(c)~t. The trace zero subspace sl is stable under
this action. This new Galois module of dimension n? — 1 is called the adjoint
representation of ¢ and written as Ad(y). Thus

V = V(Ad(p)) = {T € End(V ()| Tv(T) = o}.
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This space has a three step filtration: 0 C Vp+ CV, CV given by

(+)  VHAd() = {T € V(Ad()| T(V(9)sp)) C V()1 for all 5},
(=) ¥y (Ad(p) = {T € VAd®))| T(V(9)0) € V(@)s00p for all 5}

From this, we can think of four different Selmer groups for each p depending on
&8, which should correspond different p-adic L-functions. We simply write

Selo(Ad(p)), Sel(Ad(p)), Sel_(Ad(¢)), or Selruu(Ad(p))

according as § = 0, V,;'(Ad(p)), V, (Ad(p)) or V(Ad(p)). Then we have the
associated filtration of the full Selmer group:

Selo(Ad(¢)) C Sel(Ad(p)) C Sel-(Ad(yp)) C Sel ruu(Ad(gp)).

Among these Selmer groups, Sel(Ad(yp)) associated to V;(Ad(yp)) is considered
to be standard (generalizing the Selmer group in Example 2.3) and should be
directly related to the normalized p-adic L-function described in [H96b] 4.3 (see
the following example).

Example 2.7: We begin with a regular and pure motive M of rank n (with
coefficients in Q) defined over E = Q. By the regularity, its Hodge numbers
(ps,q:) for 1 = 1,2,...,n satisfies p; < p2 < --- < p,. We consider the tensor
product M ® MV and decompose it as M ® MY = 1 @ Ad(M). Then Ad(M)
and M ® MV are motives of weight 0; so, we can write down its Hodge numbers
in the following matrix form:

0 P2—P1 ** Pn—D1
P1— P2 0 “tc Pn—DP2

P1=Pn DP2—Pn “°° 0

Thus Ad(M) is critical at 0 and 1 if complex conjugation acts by the scalar
multiplication —1 on H%°(Ad(M)), and the middle term of Hodge filtration
F~Ad(M) = Fo(Ad(M) C Hpr(Ad(M)) corresponds to the upper triangular
part of the above matrix, and F*+ Ad(M) = F! Ad(M) corresponds to the upper
nilpotent part of the matrix. When we twist Ad(M) by an Artin motive M (%)
of rank m with Galois representation ¢ of A = Gal(F/Q) for a totally real field
F, the situation does not change. In other words, Ad(M) ® ¢ and Ad(M) are
critical at 0 and 1 at the same time, and F*(Ad(M)®) = (F* Ad(M))®. We
consider the p-adic Galois representation ¢ on the p-adic étale realization H,(M).
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Since Ad(y) is self dual, L(1, Ad(¢) ®) # 0 at least conjecturally, because s = 1
is the abscissa of convergence of L(s, Ad(¢) ®1)). Since the conjectural functional
equation is of the form s <> 1 — s, we should have L{0, Ad{y) ® ¢) # 0. We now
suppose

(1) p= ¢ modp is absolutely irreducible over F;

(2) o restricted to D, is isomorphic to an upper triangular representation with

diagonal characters 81,0, ...,d, from the top left corner;

(3) 8; =48;modp (j = 1,2,...,n) are all distinct on the inertia subgroup at p

over F
(4) F,[Sr) and 1, which is ¢ modulo the maximal ideal, are disjoint as A-
modules,
where Sg is the set of primes over p in F' and A acts on the space of formal
linear combination F,[Sr] through its action on Sp. The condition (2) asserts
that the parabolic subgroup P, is the standard Borel subgroup. This is necessary
to have the unipotent radical n C V(Ad(y)) correspond to F~(Ad(M)(1)) =
Ft(Ad(M)) by the comparison isomorphism. Note that n—1 times the dimension
of ¢-isotypic component of F,[Sr] is equal to the number of linear p-Euler factor
of L(s, Ad(y) ® ¢) which vanishes at s.= 0. Thus (4) implies no trivial zero
occurs at s = 0. Thus the Selmer group Sel(Ad(M)®1)),q should be finite. More
generally if o1 & — GL,(J) specializes to the Galois representation associated
to a motive M as above, the p-adic L-function should specialize to the order of
Sel(Ad(M) ® ¥) /g, and hence Sel*(Ad(p) ® ) ,g has to be a torsion J-module
of finite type.

We now show that the motive Ad(M) is critical only when n = 2. Since
complex conjugation ¢ (Frobenius at oo) reverses the Hodge filtration, we may
assume that ¢(c) represents the longest element of the Weyl group of the maximal
split torus of GL(n). Then the multiplicity of the eigenvalue —1 of its adjoint
action on the Lie algebra t of T is equal to [%]. This number has to be equal to

2
n — 1 for Ad(M) to be critical. This happens only when n = 2.

As already remarked above, we cannot get a critical adjoint motive from GL(n)
Galois representations if n > 2. To get something critical, we generalize a bit the
definition of Ad(y) and its Selmer group to general classical groups (when p > 2).
We write CNLe for the category of complete noetherian local O-algebras with
residue field F. For any object A € CNLg, we write my for its maximal ideal.
We consider the following type of algebraic group G defined over O: Let V be
an O-free module of rank n and (, }: V x V — O be a symmetric or symplectic
bilinear form with unit discriminant. For each object A € CNLy, we consider
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the induced bilinear form (, J4: V(A) xV(4A) > A by (, ) for V(4) =V ®p A.
Then

G(A) = {g € End(V ®0 A)| (97, 9y) 4 = v(9)(z,y) 4}

forall z,y € V ®¢ A with v(g) € A*. We then define s(A) to be the Lie-algebra
of the derived group S of G over A. Then we define Ads(p)(c) = ¢(o)sp(a)™?!
for s € 5(J) and a representation ¢: & — G(J). In this way, we get

(2.1) Ads(p): & = GL(s(J)).

For a character x: & — J*, ¢ ® x still has values in G, and Adg(p) =
Ads(p®x). Let dget: & — O be the Teichmiiller lift of det(¢ mod my): & — F*.
Similarly, we write ¢, for the Teichmiiller lift of v(p modmy). Then ¢3; det(¢)
and (¢,)~'v(p) are p-profinite characters. Thus if p is prime to 2n, we have the
unique n—th oot ® of ¢~1det(p) and the unique square root ® of ¢, v(¢).
Since det(¢)? = v(p)" and ¢, = (¢.)", we see ®2" = (&')?"; thus & = &'. We
then put @o = ¢ ® ®~1. Then v(p) = ¢, and det(p) = Pget. Therefore we may
assume, if p is prime to 2n,

(Rt) det(y) and v(p) have values in O*;
(Ss) det(y) and v(y) are of finite order, and their orders are prime to p.

Anyway, by extending scalar O, we may assume (Rt) without assuming that p is
prime to 2n. On the other hand, to achieve the condition (Ss), we may need to
assume that p is prime to 2n.

Example 2.8: Let Mg be a rank n-motive with coefficients in Q. We suppose
that M is pure and regular. Thus J = Z, and £ = Q. We suppose that
M has a polarization { , Jar: M @ M — Q(r) (see [DM] Section 4) for the
Tate motive Q(r) = Q(1)®". Then the Galois representation ¢ on the p-adic
étale realization of M has values in the similitude group G of the symmetric
or alternating form induced by {, )ar. We suppose V(@) = V(p)(—r) for the
contragredient ¢ under the polarization. By extending scalar to sufficiently large
O, we may assume that the group G(O) is one of the types of groups we are
studying. The polarization splits M ® MY into two pieces, symmetric part and
alternating part with respect to the polarization: M @ MY = Sym2(M )& /\2 M
(regarding M ® MV = End(M)). We define Ad(M) to be Sym*(M) or AN M
according as the parity of the polarization.

Now we assume that ¢ is nearly ordinary of Borel type. We may then assume,
without losing much generality, that the Borel subgroup B C G is associated
to the Hodge filtration of the de Rham realization of the motive M under the
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comparison isomorphism. Since the complex conjugation c reverses the Hodge fil-
tration, we may assume that the complex conjugation ¢(c) represents the longest
element in the Weyl group of the split torus T of B. Then in this similitude group
case, the adjoint action on the Lie algebra t of T is scalar multiplication by —1
outside the center of G (basically by definition of G). Thus Ad(M) is always
critical in this case (and hence Ad(M)(1) is also critical).

Hereafter we float the notation “G” and write G for the group which is the
target group for Galois representations. Thus if we look into representation
having values in GL,(A) (4 € CNLp) we write G for GL(n),0, otherwise G is
the algebraic group introduced as above. We suppose
(Sp) G is split over O.

(Pb) The stabilizer of the filtration (fil,) in G(J) is equal to P,(J) for a parabolic
subgroup P, of G.

Since G is split over O, we have
(Sm) The group G and the center Z of G are both smooth over O.

Since G is split over O, the parabolic subgroup P, in (Pb) is conjugate to a
standard one (defined over ©) in G(J). By abusing the language, we sometimes
call the conjugacy class in G(A) of the standard parabolic subgroup the class of
P, (over A).

Since 5(J) can be regarded as a subspace of V(Adgy,n)(¢)), we can define

(&) ViE(Ads(9)) = V(Ads(9) [ Vi (Adsiin) (9))-

Then we define Sel{(Adg(¢p)) and Sel_(Adg(p)) with respect to V*(Adg(p)) and
V-~ (Adg(¢)), respectively.

2.4. UNIVERSAL DEFORMATION RINGS. We suppose that J € CNLp. We put
7 = pmodmy: & — G(F). We write 0, for d5;,. Let P, be the Lie algebra
of P, in (Pb). Then for the Lie algebra g of G, g/P, has a natural filtration
induced by (fil,), which is stable under the adjoint action of Dy. Let gr(g/P,)
be the graded module under this filtration. When G = GL(n), the filtration on
gl is the double filtration induced by gl(J) = V() ® V(@) for the contragredient
@ of . In particular,

gr((gl/Py)(J @V in) © V(3ip) @Homﬁ 3,05 0i,p)
>] >3

as Dy-modules. When G # GL(n), gr((g/Pp)(J)) can be identified with a
submodule of the above. In other words, writing the Levi-component M, of P



378 H. HIDA Isr. J. Math.

as My x M3 x --- X My, for the split rank m, of the center of M, so that the
derived group of M; is either simple or trivial, we have

g((@/P)ANC P V@) ®VEiy)x @ Homy(d)p6ip)

1<j<i<m, 1<j<i<m,

for the projection ; , of ¢|p, to M;(J).

Let D, be the decomposition group at p € Si in H, and we write I, for
the inertia subgroup of D,. We consider the following four conditions (cf. [Til1]
Chapter 6):

(AIL) g, is absolutely irreducible as a representation of 1 into GL,(F);
(Z1) The centralizer of each deformation p: $;, = GLn(A) (4 € CNLo) of .
is made of scalar matrices in GL,(A);
(Zp,1) The centralizer of each deformation §: I, — GLn(A) (A € CNLo) of 8 p
is made of scalar matrices in GL,,(A) for all p|p in L and g;
(Regy) HY(D,,(3/Py)(F)) =0 for all p € Sg.

The last condition (Regy) follows from the following condition:
(RGr) Homp,(V(8ip),V(8;,)) =0 forallpe Spand1<j<i<m,.

LEMMA 2.2: Suppose that L/M with E C M C L C F®>) is a finite Galois
extension with p-power [L : M]. Then

(1) (Alp) is equivalent to (AlL) if p{n;

(2) Ifptn, (Zm) <= (Z1) , and if p{][;, dimd;p, (Zp,r) <> (Zp,1);

(3) (RGp) (resp. (Regyy)) is equivalent to (RGy) (resp. (Regy)).

Proof: We first prove (1). Since Gal(L/M) is nilpotent, we may assume that
L/M is cyclic. Suppose that p;, is reducible, and write £ for one of absolutely
irreducible subquotients. Let H C Gal(L/M) be the stabilizer of £. Then writing
L' = L, since L/L’' is p-power cyclic, ¢ extends uniquely to a representation
€. of §;, = Gal(F(®»>)/L') (because other extensions are of the form £;, ® x
for a character x: Gal(L/L') — F*, which is trivial). Thus by the Frobenius
reciprocity law, p. becomes already reducible, containing €. Thus we may
assume that H = {1} and L = L’. Then by the absolute irreducibility of g,
Homy,, (€,€°) = 0 for all non-trivial ¢ € Gal(L/M). Therefore by Mackey’s
theorem, Ind‘}f £ is irreducible, and hence p & Ind%’l €. In particular, we have
n = dimp = [L : M]dim¢, and hence [L : M] = 1, because p { n. This shows the
first assertion.
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We now prove the first half of (2). Let p: H3 — GL,(A) be a deformation of
Py for an Artinian local O-algebra A. By the assumption p { n, End4(V(p)) =
V & A as $iy-modules for V = V(Adsp(n)(p)). Write

Z(p) = {z € GL,(A)| zpz~* = p}.

Then Z(p) = A* <= H°($Hm,V) = 0. The action of Hy; on W = H(H,V)
factors through A = Gal(L/M). By definition, H°(A,W) = H%($,,V) = 0.
Let W* be the Pontryagin dual of W. Then H°(A, W) is the Pontryagin dual
of W/aW for the augmentation ideal a of A[A]. Since A is a finite p-group, a is
nilpotent. Thus by Nakayama's lemma, W =0 <= W* =0 < W*/aW* =
0 <= H°Hp,V) = 0. This shows the result. The same proof applies to
(Zp,L)'
We now prove (3). We look at

V = Homp(V(8;),V(8;p)) and W = H’(H,V).

Then (RGp) is equivalent to H°(D,,V) = 0 for all j < i. Since A, C Ais a
p-group, by the above argument,

H(Dy,V) = H(A,, W) =0 < W =0,

which shows the assertion for (RG). The same argument applied to V = (g/P, )(F)
yields the equivalence for (Reg). l

Two deformations p and p' of § (with values in G(A)) are strictly equivalent
if p(g) = zp'(g)x~! for z € G(A) for the formal group G, that is,

G(A) = {z € G(A)| z = 1modmy}.

We write p & p if they are strictly equivalent. A deformation p is called nearly
ordinary of type F = {F,} if we have the following filtration of Dy-modules for
all p € S whose stabilizer is in the class of P, over A:

(fily) 0CV(p)1p CV(p)2p C -+ CV(P)m,p = V(p),

where V(p)/V(p);,p is a A-free module and 6, ; , modmy 2 6; , for all 5.

We assume that (Rt) and write dqet = det(y) and ¢, = v(p). We put ¢
for the pair (Pget, @) if G # GL(n) and ¢ = ¢get if G = GL(n). Since these
characters have values in O*, we may regard them as characters having values
in any object A € CNLp by composing the structure homomorphism O — A.
Under (Sm), (Z1) and (Regy,), the functor ®¢ = @g’ 1» associating to A € CNLg
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strict equivalence classes of type F deformations p: ) — GL,(A) of p with
(det(p), v(p)) = ¢, is representable as shown by Mazur, Boston and Tilouine (cf.
[Til] Chapter 6), where ¢qet and ¢, are regarded as having values in A via the
structure homomorphism: © — A. Thus there exists a unique couple (R, p) =
(Rg’ L gg, ;) made of R € CNLy and a continuous deformation ¢: £, — G(R)
of 7 such that for each nearly ordinary type F deformation p: $;, — G(A) €
CI%, .(A) of B, there exists a unique O-algebra homomorphism ¢,: R — A such
that p is strictly equivalent to ¢, o g. In particular, we have a unique O-algebra
homomorphism 7: R — J such that 7o p = ¢.

Write £ = §;,. Under the assumption (Z, 1), the deformation functor for
H =1, or Dy:

QgZ(A) = {{: H— GLdim(E)(A)l {modmy = Z}/ ~

is representable over CNLyp. We write (R €,g -) for the universal couple.
For the universal deformation o € ®%(R) of type F, we have 6,0 H —
GLim3, , (R), which is a deformation of 4;, over H. Thus we have a canon-
ical (’)—algebra homomorphism i; ,: Rfjm — R inducing 6, from the corre-
sponding universal representation of H. For H = I and D, we write RgL(n)’ F

for @ j,p(R:%j .,) and tg: Rg — R for the tensor product of these morphisms.
Again by deﬁﬂition, RgL(n)’ 1, is naturally an RéL(n)’ 1-algebra.

Let M, be the (standard) Levi subgroup of the standard parabolic subgroup
in G conjugate to P,. Then we can regard the representation on gr(V(p,)) =
®D; V(8;p) as a representation 6, of D, having values in M(F). Then we can
think of the deformation functor for H = Dy and I:

UH(A) = {p: H > M,y(4)| p= 5, modma} /My(A)

where M\p(A) = {z € My(A)| z = 1modmu}. Under (Z, ) for individual &;,
for each j, this functor is representable, giving rise to the universal ring R,{{G
We put '

— —

D _ D, I — Iy
(2.2) RZ, = ®p€SFRG,L and RS, = ®p€SFRG,L.

The global universal deformation ring Rg, 1 1s an algebra over the local one Rg, L
for H = I and D, and the algebra structure of Rg, [ over RgL(n)’ pfor H=1
and D factors through RY ;.
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2.5. KAHLER DIFFERENTIALS ON UNIVERSAL DEFORMATION RINGS. We recall
Mazur’s argument (cf. [MT]) to relate 1-differentials on Spec(R) (R = Rg, 1) with
the Selmer group Sel*(Ads(y)),L-

For any R-module X of finite type, we write R[X] for the R-algebra with
square zero ideal X. Thus R[X] = R& X with (r®z)(r' ®z') = r' & (r&’ +r'z).
It is easy to see that R[X] € CNLp. We consider the O-algebra homomorphism
& R — R[X] with £ mod X = id. Then we can write {(r) = r@d¢(r) with d¢(r) €
X. By the above definition of the product, we get d¢ (rr’) = rdg(r') +r'de(r) and
de(O) = 0. Thus d¢ is a derivation, i.e., d¢ € Derp(R, X). For any derivation
d: R — X over O, r = r & d(r) is obviously an O-algebra homomorphism, and
we get

(23)  {pe®f (RIX])| pmodX =0}/ ~x
= {pe @} (RIX])| pmod X ~ o} /
~ {¢ € Homp_ag(R, R[X])| € mod X =id}
=~ Derp(R, X) = Homg(Q2g/0, X),

where “~x” is conjugation under 1 & M, (X) N G(R[X]). Here and hereafter
Q4/p for a B-algebra A (A,B € CNLp) indicates the module of continuous
1-differentials with respect to the profinite topology.

Let p be the deformation in the left-hand side of (2.3). Then we may write
p(o) = o(a) ® u,(0). We see

e(or)®uy(07) = (o(0) ®u,(0))(e(r) By (7)) = 0(o7)(e(0)uy(T) +up(o)e(r)),

and we have
1

up(07) = (0)uy(T) + u,(0)o(7).
Define u,(0) = u),(0)o(0) ™"
On the other hand, z(0) = p(c)g(c) ! has values in S(R[X]), and z = 1®u
# = ¢ — 1 is an isomorphism from the multiplicative group of the kernel of the
reduction map S(R[X]) - S(R): {z € S(R[X])| £ = 1 mod X} onto the additive
group Adg(X) = s(R) ®r X = V(Ads(o)) ®r X. Thus we may regard u as
having values in Adg(X) = V(Ads(o)) ®r X.
We also have
(2.4) uy(or) = u;,(ar)g(a'r)_1
= g(a)u;(r)g(ar)_l + u:,(cr)g(r)g(ar)’1
= Ads(0)(0)us(r) + up(o).
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Hence u,: 1 — Ads(X) is a 1-cocycle. It is easy to see the injectivity of the
map:

{p€ @ L(RIX])| pmod X ~ o} / mx— H (511, Ads (X))
given by p > [u,). We put V;*(Ads(X)) = V;¥(Ads(0))®r X. Then we see that
(2.5)  u,(lp) C Vit (Ads(X)) <= u(Ip) C Vit (Ads(X)) < dg(Rép) =0

if £ € Homo_a14 (R, R[X]) induces p.

Note that J* = [Jx X for R-modules X of finite type, which shows R[J*] =
Ux R[X]. From this, any deformation (continuous in an appropriate sense)
having values in G(R[J*]) gives rise to a continuous cocycle (see [HT] Chapter 2
for details about continuity). In this way, we get

(2.6) (Qr/a ®r 1)* = Homg(Qr/0,3*) = H' (91, V(Ads(9))*)

if R is an A-algebra for an object A of CNL¢. Basically by definition, p is nearly
p-ordinary if and only if u, restricted to I, has values in V= (Ads(p))*.

We can argue in the same way as above, replacing the inertia groups by the
decomposition groups, and we get the corresponding results on the strict Selmer
groups. Thus we get from this and (2.5) the following fact:

THEOREM 2.3: Let G = GL(n) or the group introduced in 2.4. Let S be the
derived subgroup of G. Suppose (Z1,), (Reg;) and (Z,, 1) for 8, for all p|p. Then

Sel” (Ads(p))/L = QR?;,L/RA,L ®py | J, and
Sel*—(AdS((p))/L = QR% i ®R‘é L -lla SGIZt(AdS(‘P))/L = QR?’. L/Rg‘L ®Rg L J

as J-modules. Moreover, we have the following exact sequence:
Qnz ,/re, ®rg , I = Sel’(Ads(p))/1 = Sely (Ads(p)) /L = 0.

2.6. TWISTED SELMER GROUPS. Let ¢: Gal(F®»>)/E) - GL,(J) be a rep-
resentation. Let 5 = pmodmy. Suppose that 55 and ¢g are nearly ordinary
of type F = {(fil,)}p. Fix a Selmer datum S = {V,"} for pg. In this section,
we write Sel(p), for Sels(p);r. We introduce the Selmer datum for IndZ o
and ¢ ® 1 (for an Artin representation v of A = Gal(F/E)) induced from S and
study the relation between Sel(¢g ® ¥), Sel(IndE @) and Sel(pr).

Since [F : F] is prime to p, if F is sufficiently large, we can decompose Ind? F
(for the trivial $§-module F) into a sum of absolutely irreducible representations
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E: A= Gal(F/E) — GLm(zp)(F)
dEF = @ m(v)P
¥

with multiplicity m(1) = dim(¢). Then this decomposition lifts to a unique
decomposition of O[A]-modules: O[A] = @Jm(d))i/) for a representation ¢: A —
GLy () (O) such that ¥y modme = 9. The y-isotypic component O[A][] of
0O[A] is an O-algebra direct summand of O[A] because of p { |A]. We write 1,
for the central idenpotent of O[A][¢]. Then for any O[A]-module X, we write
X[4] = 14, X and call it the y-isotypic component of X.

Let ¢ = wE|s. Let L be an extension of E linearly disjoint from F over E.
We put M = LF. The natural action of A on H'(®, V(¢r)*) induces the action
of A on Sels(wr)/nm. We then write Sel(or)/a[] for the ¢-isotypic component
of Sel(¢pr) /. We like to give a Galois-cohomological definition of Sel(¢r®o0v) /L
so that

(TW) Sel(pr)/m(¥] 2 (Sel(pg ®p )/1)™¥)

as J[[Gal(L/E)]}-modules if L/E is a Galois extension. By linear-disjointness of
L and F over E, we have res : Gal(M/L) = A by the restriction map. Let ¥
be the set of primes ramifying in F(®»>)/E and let E®>)/E be the maximal
extension unramified outside ¥ U {oco}. Let Gx = Gal(E®>)/X) for a subfield
X of E&®) Then we define two Gg-modules in the following way:

Ind%(V(¢r)) = O[GE] ®og, Vipr) and O[A]®o V(px).

Here we regard O[Ge] ®o(g,) V(¢r) (resp. O[A]®0 V(pE)) as a left Ge-module
by o{T ® v) = o7 ® v (resp. (T ®v) =7 ® ov), where T is the restriction of ¢
to F. We claim, as O|Gg]-modules,

(2.7) v: Indg(V(pr)) = O[A] ®0 V(pE).
The isomorphism ¢ is given by
OlGE] ®oigr Vipr) 2 0 ®v =5 @ ov € O[A] ®0 VipE),

where ¢ — @ indicates the projection of Gg onto A.
(1) By Shapiro’s lemma, we have HY (G, Ind% V (op)*) = HY(Gar, V(pp)*).
(2) On the other hand, from (2.7), we have

H'(GL,Ind§ V QBH (G, V(pe ®9)" )™V,
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We can let A act on O[A]®V(pg) by 6(a®v) = ad~!®v. This action commutes
with the action of Gg on IndZ ¢r. Since ¥ is self-O-dual (p1|A]),

(0[A] @ V(ee)[¥] = (O[A][¥) ® V(eE).
Then, combining the two identities (1) and (2), we see that, for V =V (pg ® 1),
(2.8) t: HY(GL, V)™¥) — HY(A, H (G, V)™ 2 HY(Gar, V(pE)")[¥]

is an isomorphism of O[Gal(L/E)]-modules, identifying A with Gal(M/L).
There is another way of showing the isomorphism (2.8): Writing V =
V{pr ® v), we have from the inflation-restriction sequence:

0 — HY(A, H(GMm, V*)) —» HY G, V*) > HY(A,H (Gum, V*))
= Homa (V (), H(Gum, V(pE)*)) = H* (A, H(Gm, V™).

Since d = [F : E] is prime to p, HY(A, H(Gar, V(pe ® ¥)*)) = 0 for all ¢ > 0,
and hence we get the isomorphism (2.8), because

Homa (V (%), H(Gm, V(er))™ ) 2 H'(Gu, V(eE)")[¥]-

We can give another definition of Sel(¢r);p equivalent to the original one,
using Gar in place of $ = Gal(F®>)/F):

(2.10)  Sel(vr)/nm =Ker(H (Gar, V(er)®)
ST H Ta, Ver)) x [T H"(Ip, V(er)* [V (eF)*)),
Otp Blp

where capital gothic characters indicate prime ideals of M and r is the product
of the restriction maps for  { p and those composed with the projections:

Vier)' — —-—V.(@F)*
Vf,p (¢F)*
for P|p.

There is a local version of the restriction map ¢: First we fix a prime ideal P of
M dividing a prime ideal p|p in L such that Viz (o) = V; (¢£). All other primes
over p can be written as (%) for 0 € Gy\Gr/Dp. Thus D) = 0Dpo™?
and Va?‘m((pp) = a(ng(tpp)). Note that GyoDp = 0GuDy = 0DpGu, and
hence O[GyoD,] is a right and left Gpr-module. Note that {P'|p} = {o(B)} =
{Gm\Gr/D;}. Since Gar N Dy, = Dy, we may regard, inside O[G1] ®oig,q V,

oDyo! - — - -
(2.11) o™ Ind] D07, Vi = 07 0[0Dy0 ™Y @0fopyo1] Vo
= O[Dpo_l] ®0[eDgo-1] V;(m) C (')[Dpo'_lgM] ®ogm V C Ind? V,
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where V = V(pr) and Vo = Va_(,p)(cpp). We put

- - Dgo™' 1,_
(2.12) V, (Indf pp) =y o™ Ind pP7, Vg,
ag

which is stable under D,. Thus {V; (IndZ o)} gives a Selmer datum for
IndE pp. We write Sel(IndE o) for the Selmer group with respect to this datum.
Note that for h € Gy,

— hoDg(ho)™t ¢,
(213)  (ho) ' Ind,;p Y01 Viem

= (ho) T O[ha Dy (ko)™ ®0iho Dy (ho)-1] (Vi)

a(B)
- O'_IO[O'DpJAl] B0[oDyo—1] Vo—(‘B)
-1
= o™ Ind 27, Vi) € 01Dy ™" Gar] @oigun) V.

Then writing A, for the image of Dy in A, we conclude from (2.13)

- E _ oDgo™ ! <,
214V, (ndfer)= @ o Mnd]pP7 L Vi
o€Gm\GL/Dy
= P 0aF 80V, (vE) = 0lA] @0 V; (#8),
oeA/A,

which shows ranke V;~ (IndE pr) = g(B/p)e(B/p)f(P/p)d = [F : E}d for d =
dim(V; (¢r)) and by Shapiro’s lemma,

D H (I, Vo (0r)*) =2 H' (L, V; (IndF 0F)*).
Blp

Thus fixing an isomorphism: V(3)™%) = O[A][y] for a model V(%) of ¥, we
define a Selmer datum for ¢ ® ¥:

(215)  Vy (e ®v) = V() ®o Vy (¢5) C OlA] @0 V(ps).

Then we get an isomorphism induced by ¢
(2.16) v HY (L, V™ (IndE or)*) = €D H' (I, Vy (v @ 9)")™¥).
4
We now look at a prime q 4 p of L ramifying in M/L. We have the following
exact sequence:
217) 0 H'(Iy/Ia, H'(Ia,V(pp ®$)") =5 H'(I,, V(ep ®%)")
=3 HO(Iy, H (I, V(pp ®9)") T HY(I,/In, H(In, V(pr @ ¥)7).
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Since I/Iq < A, the order of I/Iq is prime to p. Hence
Hj(Iq/ID’ HO(IQa V(QOE 2 "p)*)) =0

for j > 0. This shows that any 1-cocycle u of I, trivial on Iy is already trivial
on Iy, ie., u|j, =0 < u|r, =0. In particular, u is unramified at g.

By the above argument, we can define for each irreducible representation 1
of A,

(2.18) Sel(pr ® ¥)/1 = Ker(H' (G, V(e ® ¥)*) 5
HHI(Iq, V(pe ® ¢)*) x HHI(Ip, V(ee ®9)"/V, (e ® ¥)*)).
atp plp

Similarly we define

(2.19) Sel(IndZ ¢r) 1, = Ker(H (Gr, V(Ind} ¢r)*) >
[1H e, V(indE or)*) x [ [ H (Lo, V(IndE ¢r)* /V,” (IndE or)")).
atp plp

Then the above argument shows the following isomorphism of A-modules:
(1) Applying Shapiro’s lemma to local and global Galois groups,

Sel(Indf. ¢r) 1 2 Sel(or) m = @D Sel(or) mlv];
Y

(2) Sel(Indf ¢r) /L = @B, (Sel(pr ® ¢)/2)™).
From this, we obtain

PROPOSITION 2.4: Let L/E and F/FE be Galois extensions linearly disjoint over
E. Suppose that pt [F : E]. Put M = LF. Suppose near-ordinarity of type
F ={V(3y)}p|p for pg: Gal(FP>) /E) — GLy(F). Let J be an integral domain
in CNLp. Then for each deformation pg: Gal(FP*)/E) — GL,(J) nearly
ordinary of type F, we have an isomorphism of O[A][Gal(L/E)]-modules:

Sel(pr)/a = Sel(Indg pr)/1 = ED(Sel(pr © ¥)/L)™ ),
¥

where v runs over all irreducible representations of A and m(%) is the multiplicity
of ¥ in O[A]. This isomorphism induces

Sel(yr)/ml¥] = (Sel(pr ® ¥),1)™Y),

where Sel(¢r)/m(¥) is the 4-isotypic component of Sel(¢F) /m-
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2.7. CONJECTURAL HOLOMORPHY OF THE p-ADIC L-FUNCTION OF
Ads(p) ® 9. The argument in Example 2.7 just tells us that the Selmer group
Sel*(Ads(p) ®%), g should be torsion under the assumptions in Example 2.7. On
the p-adic L-function side, in principle, for a given absolutely irreducible Artin
representation ¢: & — GL,,(J), the p-adic L-function should be holomorphic
at s = 0 if Ads(p) ® ¥ and Adg(p) ® YN for the p-adic cyclotomic character
N (sending the geometric Frobenius Frob; to N({)) do not contains the trivial
representation ([H96b] Section 4.4).

LEMMA 2.5: Suppose p t [F : E]. Then Ads(p) ® ¥ does not contains the
trivial character for an absolutely irreducible representation 1: A = Gal(F/E) -
GL,,.(F) if (ZF) is satisfied by p. If Ads(p)®% contains the Teichmiiller character
and Py is absolutely irreducible, pr is an induced representation from F(uy).

Proof: The first assertion follows from the proof of Lemma 2.2. If V(Ad(pfp)) C
Homp(pp, Pr) contains the Teichmiiller character w, then pp = pp ® w. This
implies pp = Indf;(“p) g for a representation ¢ of $r(,,), by [DHI| Lemma 3.2.
|

By the lemma, under (Alp(,,)), the cyclotomic p-adic L-function
Ly(s,Ads(p) ® 9) (if it exists) should be holomorphic at s = 0.

3. Base-change for deformation rings

Let E be a number field or a p-adic field field with (p-adic) integer ring Og.
Let F/E be a finite Galois extension with Galois group A. Let M = Eif E is a
p-adic field and M = F(®>) if E is a number field. We write & = Gal(M/E) and
$ = Gal(M/F). Then we fix a n-dimensional continuous Galois representation
7: & — G(F) for a finite field F of characteristic p. Let n = dimp and suppose
that p { 2n. We suppose that p is nearly ordinary of type F = {Pp}, if E is a
number field. We study the relation between deformation functors of p on & and

9.

3.1. DEFORMATION FUNCTORS. Let L/E be a subextension of M/E with
Hr = Gal(M/L). Fix two characters ¢ger: ® — O* and ¢,: & — O such
that ey = detopmodmp, ¢, = v o pmodme and ¢34, = ¢7. Since p { 2n,
the information of ¢, determines ¢get and vice versa. When G = GL(n), we
disregard ¢,. We study the following functors defined on CNLg:

(3.1) @5 (A) = {p: 5. - G(A)] p=Ppmodmya}/ =,
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(3.2) @’é‘f{d (A) ={p: 9L > G(A) € <I>f"”(A)| p is nearly ordinary of type F},
(3.3) (I%,L(A) = {p: 91 = G(A) € "4(A)| detop = aer and vop= ¢, }.

Hereafter we fix G and write ®7 for the functor defined above. Of course, ®7-°r¢
is defined only for global L.

Remark 3.1: We introduce one more functor to cover Galois representation as-
sociated to unitary groups. Let ¢ be an element of order 2 in Aut(E). Extends
c to M. Then ¢ acts on & by g = cgc~!. We consider p(g) = p(cgc?!) for
pE @{"“(A) as long as c leaves L stable. We suppose that p¢ = 7. Then we
define a functor, supposing the properties: 7 are stable under p — g,

of (4) = {P € ®gy,(ny,L(A)] p° = /7} ;

where ? is a combination of ¢, full and n.ord. This functor is representable
by R&L € CNLp under (Zr) if ? = full and 7 = (full, $) and under (Z1) and
(Regr) if ? = n.ord and ? = ¢. By definition, the functorial map: p — p° induces
an involutiop on @Z;L(n), 1 and hence on the universal deformation ring RZ;L(”)’ L
representing the functor @éL(n)’  and on the corresponding Selmer group. We
write the fixed part of the involution of Sel* (Adsy(n) (¢)) /1 as Sel;.(Adsy(n) (¥)) /L
and call it the anti-cyclotomic part of Sel*(Adsp(n)(¢));L. Then if p { 2n, we
have

(3.4) Qps s Ope I Sell(Adsrn ()1

GL(n),L

3.2. BASE-CHANGE. Let L/L’ be an intermediate Galois extension of M/E
with Galois group I'. Suppose that <I>?G, 1, and <I>Z;, - are both representable. Let
af = a7L L Rf?}, L — R7G7 1+ be the base change morphism defined by a?gz ]
0%:|s,, for H1, = Gal(M/L). We like to study the morphism o, in particular, its
kernel and cokernel. For that, we recall the theory of I. Schur describing when
one can extend a representation of a normal subgroup to the ambient group (see
[H96a] Appendix).

We recall the condition (Sm) in 2.3 that G is smooth over O, and by that, we
have

(S) The reduction map: G(O) — G(F) is surjective.

For each o € $;,, we choose £(c) € G(O) such that £(c) = p(s) modme. Then
we define p°(g) = £(c) " p(cgo~1)€(s). The strict equivalence class [p°] € ®7 (A)
is independent of the choice of £(c). Thus $z+ acts on ®},(A). If o € H, then

p°(9) = £(0) " ploga™)e(0) = L)~ plo)p(g)p(o™)E(0),
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and £(0) " tp(o) € G(A). Therefore, the action factors through I' = Gal(L/L').
Suppose (Zr) and p € Q?L’F(A) ={pe ®(A) p° ~plorallo € I'}. Then we
can find a map ¢: Hr — G(A) such that ¢ = pmodmy4 and p = c(o) " p%¢c(0).
We may further assume that c(1) = 1 and c(ho) = p(h)c(o) if h € 9y, (see [HI6a]
Appendix). Then we define b(o, 7) = by(0, 7): H' X Hrr = G(A) by

c(a)e(r) = blo, T)eloT).

Since b has values in the centralizer Z(p) of p, b has values in G(4) N Z(A) =
(/},\n(A) by (Zr) for the center Z(A) = A* of G. As seen in [H96a] page 116,
b factors through I'. Thus b is a 2-cocycle of T’ having values in (/}:,(A) The
cohomology class [p] = [b,] € H 2(I‘,(/}Tn(A)) is well defined independently of
the choice of ¢ (see [H96a] Appendix). If b, is a coboundary, writing b,(o,7) =
(o, 1) = ((0)¢(T)¢(oT)™! by a cochain (: Hr — é;(A), 7 (o) lc(o) is a
representation of $r, into G(A4) extending p. On the other hand, if there exists
an extension m: $;, — G(A), then b, is a coboundary of ((¢) = 7(c) 'c(0) €
Gm(A). Thus

[p] =0 <= p extends to a representation m: H — G(A).

If G = GL(n), b} = det(by) = bget(p)- Thus [det(p)] = n[p], and extensibility
of p is equivalent to that of det(p) under p t n. In particular, if det(p) = Pget,
the extension @qe; corresponds to a l-cochain ¢ such that byey(,) = 0C. Then
b, = O¢/™. The extension m = (~Y/"¢ then satisfies det(w) = pge;. Moreover
such extension is unique, because all other extension is given by 7 ® x for a
character x: I' —» A (see [H96a] Appendix). As seen in [H96a] Section A.2.2,
under (Regy), the extension of p € ®7°"4( A) is again nearly ordinary of type F.
Thus under the assumption that p { n, we can extend p € (b((ﬁ}L(n), 1 (A) uniquely

to an element of (DgL(n),L,(A) giving

@l
(ng(n),L‘(A) = CDZL(n),L(A)'

If G # GL(n), writing { , ) 4 for the pairing defining the similitude group G(A),

we see

)
= (c(o)e(r)c(or) "z, c(o)e(T)e(or) 1y) 4

= v(c(o)e(T)e(ar) ™Y (z, y) 4.
This shows, in HZ(F,(/;;L(A))»

2[p] = [vpl,
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where vp = v o p: H1r — Gy (A) is the similitude character of p. Suppose that
[vp] = 0. Then, we can find (: T — G,,(A) such that b,(a, 7) = ((e)(r)({o7)?
and b,,(0,7) = ((0)%¢(r)*¢(a7) 2. Then n(g) = c(g)¢(g) ! is an extension of p
with vm = ve¢=2. Similarly, we get byes(p) = ((0)"¢(T)*¢(07)™™. Thus if p { 2n,
then we have

% 1, (4) =BG (A).

If [L : L'] is prime to p, the obstruction cohomology class [p] always vanishes,
because H?(', G,,(A)) = 0. Thus we have

? 7T
Qo =06 L

Summing up, we get

PROPOSITION 3.1: Suppose p 1 2n, (Z1) and (Sm). When F is a number field,
we suppose (Reg; ) and (Z, 1) in the nearly ordinary case. Then, ifp{[L: L],
we have
®Gp = ‘I’?d,FL(A)

for 7 = full,(full,$),n.ord,¢. Suppose that v(p) or det(p) can be extended to
a character ¢: 91 = G (A). Then (even if p|[L : L']), each p € Qg’i,(A) can
be extended to a representation n: $yr» — G(A) such that * = py, modmy and
vm = ¢. Moreover under (Regy), we have

¢ o~ 70T é,full ~ g¢,full,l
¢G’LI == QG,L and QG,L’ = @G’L s

where
oL (A) = {p € LT (A)] (det(p), v(p)) = ¢}

Let F1: CNLp — SETS be the full deformation functor on 3, of the character
det(py). Foreachp € @’é‘f’[d(A), det(p) ™ @get has values in G, (A). Thusifptn,
(det(p) ' daet) /™ is uniquely determined. If further pt 2n, p® (det(p) " dger)!/™
is an element in ‘I)dc’:, 1 (A), and we may associate (p® (det(p) " paet) /", det(p)) €
<I>‘£(A) x Fr(A) to p € ®*°r4(A). Since we can recover p out of the pair (pg, &)
by p = pg ® ($7a€)Y/™, we have

oyt el xFL and L7 ol x L.
This shows

COROLLARY 3.2: Suppose pt2n, (Z1) and (Sm). When E is a number field, we
suppose (Regy) and (Zp,1) in the nearly ordinary case. Then
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(1) Ifp} [L: L], the base change morphism o’ induces
RE,G/ Z Rz,c(’Y - 1)R?L,G = R?L’,G
~ver
for ? = full, (full, ¢),n.ord, ¢.
(2) Even if p|[L : L], the base change morphism o induces

Ri,c/ Z Rf,c(’Y - 1)R‘£,G = R(Iij’,G’

~eT
Jfull full Jull o o, full
RPLNISN REDM (v - )REL" > R and
Yer
~ ?
R} ¢/ > Rl (v — 1Ry g =Im(a.,;),
Y€

where 7 = full and n.ord. Moreover we have a canonical isomorphism:
R'? ~1 ? o AI
Lc EImlag, )@, AL,

where 7 = full and n.ord, and Ay is the universal deformation ring rep-
resenting Fr,. The ring Ay is isomorphic to the Iwasawa algebra O[[$%",]]
for the maximal p-profinite abelidn quotient f_)%l?p of Hr.

Proof:  The assertion (1) and the first assertion of (2) follow directly from
Proposition 3.1. By the argument just prior to the corollary, we see R’L"gd >
RzGQ@oAL. Under this decomposition, a'L"/"eri = o/z/L, ® Br/L, where S,y
A — A7 is the base change map associated to Fp:(A) 3 € — €|, € Fr(A).
The base change map Br,rs is induced by the inclusion: iy <> $Hr:. From the
first assertion of (2), we get the second and

RZ}?&d ~ Ri,G®oAL = Im(a‘z/L,)@o(lm(ﬁL/Ll)®ALAL,) = Im(az'/ozfi)éALAL”

which finishes the proof. ]

3.3. CONTROL OF KAHLER DIFFERENTIALS. We fix a Z,-extension F,,p with
I' = Gal(F/F) & Z,. Later we specialize our argument to the case where
Fy, = FE for a Z,-extension E./E, but for the moment, F,,/F is an arbitrary
Zy-extension. Let o, = Gal(M/F); hence, /., =T'. Let p: & — G(F) be a
representation. For 5, we suppose (Zr), (Regp) and (Z, r) in the nearly ordinary
global case. In the nearly ordinary case, we also suppose:

(EP) pt 2anim3j’p.
j’p
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Under these conditions, the functors <I)} studied in the prior subsection are rep-
resentable. Then by Lemma 2.2, the functor <I>;'- = <I>?Fj is again representable for
the j-th layer F;/F. Over Fy, the functor & may not be representable but at
least pro-representable. We write (R}j, g}j) for the universal couple representing

?
®;.

We apply Corollary 3.2 to Fo/F;/F. We write v; for a generator of I'; =
Gal(Fw/F;). Let R}, = R, = li‘_ij;,j for ? = full, n.ord or ¢. Then R’
prorepresents ®}. . We then put R} = ar_,r,(R%,) = Im(ar,;F,) C Rf,. Then
by Corollary 3.2, we have Rf = Rf«l and

(3.5) R} = R, /R, (v; - )R

PRrROPOSITION 3.3: Let the notation be as above. Suppose that 7 = ¢, full
or n.ord. Let A be a closed O-subalgebra of R’ (in CNLp) on which T acts
trivially. Let B be an A-algebra in CNLp and m: R} — B be an A-algebra
homomorphism. Then we have for 0 < j < k < oo,

Qg a®p; B
(v — DQpz /a®p B

= QR;/AéR:B

Although this result is intuitive and is essentially deduced from Corollary 3.2
in [H96a] Corollary 1.1, we shall give a proof since this is fundamental in the
sequel:

Proof: We write R for Ri®4B and R’ for Ri®4B. Then R/R(y; - 1)R= R'.
Write « for the projection: R — R’ and #’ for mo((woo@)@id) :R' = R®4B —
B&4B 3 B for multiplication m: B& 4B — B. Let A = 7’ o . We have

Ker(\) ®g B = Ker(\)/ Ker(\)? = Qp/p ®r B = Qg 6,5/40.8 O B
= (Qp; 4®4B) ®r B = Qg 4@ p: B.

Similarly, we have Ker(r') ®p B = Qg 4®p?B. We have the following exact
J J
sequence:

(3.7 0 = R(y; — 1)R — Ker(A} = Ker(r') — 0.

Tensoring B over R to (3.7) and writing J = R(y; — 1)R, we get another exact
sequence:

(J/J?)®r B=J 8r B Qpz 148r B — U/ a®pr B — 0.
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We look into the B-linear map v;—1: Ker(A) — R. Write B’ for the image of B in
R. Then B’ C Ker(y;—1) and R = Ker(\)+B’. Thus (y;—1)R = (v;—1) Ker(\).
Since v; is a B’-algebra automorphism of R and J/J? is a B’-module, we have

r(y; — )’ = (v; — I)rr'mod J?  (r,r’ € J).

This shows that y;—1: Ker(A) — R induces a surjective morphism of B’-modules:
Ker(\)/ Ker()\)2 — J/J?; thus, Im(3) = (y; — 1)(QR2/A(§)R;CB), which shows the
result. 1

We can slightly generalize the above result as follows:

COROLLARY 3.4: Let the notation be as above. Suppose that 7 = ¢, full or
n.ord. Let Ao be an O-algebra with a continuous I'-action which is a pro-object
of CNLp. We suppose that R, has a structure of Ay -algebra and that the
I-action on Ay and Ry is compatible. Thus R; is an Aj-algebra for A; =
Aso/Aco(7; —1)Aco. Let B be an Ag-algebra in CNLe and m: R} — B be an
Ano-algebra homomorphism. Then we have for 0 < j < k < oo,

Qg /4, On: B
(vi = 1)Qr2 /4, Or: B

Proof: By the assumption and the proof of Proposition 3.3, we have

Qg /0®p; B
(v = DQg; j0®r: B

= Oprjo@p: B

and N
D4, /004, B

(7; = D)9, /0®4, B
This yields a commutative diagram with exact rows:

=0, 08a4,B.

Qpr OB Q2 QB
Q4p,,/098 v RZ /O R, /A 0
(77— /0®B (=1 _,o®B (=182 /4., ®B
HIl |lll
QAj/O®B QR;/O®B QR;/A].@B—)O.

We then conclude
Qrr /4. ® B
(vi — Qg2 ja, © B
which finishes the proof. ]

=Qpja, ® B,
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4. Control theory for Selmer groups

We return to the situation in Section 2. Thus F/E is an extension of a number
field E, & = Gal(F®>)/E) and $ = Gal(F(®»>)/F). We fix a Galois repre-
sentation ¢: 8 — G(J) C GL,(J) nearly ordinary of type F = {(filp)}ip. Let
7: & — G(F) be the residual representation of ¢. We assume that

(EP) p is prime to 2n[F : E] and dimé;, for all p|p and j
in addition to (Zr), (Zp,r) and (Regr). Let Foo/F be a Z,-extension such that
(TR)  Foop = U, Fjp is a totally ramified Z,-extension of Fy for all p|p.

4.1. GLOBAL CONTROL THEORY. For H =1 or D, we put RY = R in
(2.2). Then we put R to be the image under the base change map in RE of
RE . Then by Corollary 3.2, we have locally and globally

(4.1) RE =RE/RE(y;~1)RE and R?= RS /RS (v;—1)RE.
Thus we have from Corollary 3.4

Ly, jrs ®F

4.2
(4.2) (15 = 1)Qpg ru ®3

= Qpe/py ®F.

Applying this to H = I, we get
PROPOSITION 4.1:

Sel* (Ads(¢) ® K),
(’)’j -1) Sel* (Ads(p) ® N)/F

We note here that we have the following exact sequences:

(= Qjo/R; ®J.

(4.3) Qr1/r; Ort, = Qe g1 ® J = Sel* (Ads ()7 = O,
(44) QROD/R(', ®R5J_)QR2/R{,®']I_)QRg/R§ ®J—=0.

4.2. LOCAL CONTRIBUTION. We now make explicit the A-module Qpr /g1 ®g1 J
and Qpp/p; ®pp J. Since G is split over O, the center ZM, of the standard Lev1
subgroup Mp of the parabolic subgroup P, C G is isomorphic to Gr’. Then
the respresentation 6,,. D, — M, can be regarded as a product of my-absolutely
irreducible representations 3,;,, fori=1,2,...,m,. We can thus split

= Qs B, i,
peSFj i=1 J0ip
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into the tensor product of components R]I_ 3.
Wi, p

R]I, 5, is the image under the base change map of the universal deformation ring
20i,p

of the representation d;, of the ineratia group at p over Fo, , = U; Fjp in the

associated to 6; ,. The component

universal deformation ring RI of the inertia group over F;,. By Corollary

&0, F;
3.2, we see
I ~pl_ 3
RE.»,,,,F R] 8; ,,®A’oo,l,, AIJ‘.v’
where Ar,, = O[[I#) ]] for the maximal p-profinite abelian quotient I}  of

the inertia subgroup L, C Gal(F,/F;,) for j = 0,1,...00. Note that the

natural algebra homomorphism of R&  into R"FS. factors through the universal
i,p

deformation ring RD of 6,-,,, over Dy. Thus by applying the base change
l Py

map @, we get that the image of Ar,,,p in RY .

,ps

isomorphic to O[[W]] for the universal norm group W inside O}fwv. Then by the

total ramification of Foo,p/Fy, Op /W 2 T'. The natural map of Ay, , into Rf r
LIY B}

is given by the determinant character det d;  , which factors through the image

(isomorphic to OF ) of I in D""’ Thus the image of Qp: RL_/R! ®R_ Jin (4.3)

is, by local class field theory,

is equal to the image of Qo[[o /01w ®0 () J=r ®z .]I JI In thlS way, we
get from (4.3) the following exact sequence:

(4.5) P IS B 5 Qpe s ®F = Sel* (Ads(p))/r = 0,
pESE

where S, is the set of primes of F over p € Sg in E and J[S,] is the J-free module
generated by the elements of Sy, on which A = Gal(F/E) acts by its action on
the set Sy. Here we have the exponent m, —1 in place of m, because of the fixed
determinant condition: det p = ¢get, which kills the contribution of §y,, 5.

We now study Qgo/p; ®R(z)>'.]l in (4.4). We look at R2 and R! . From the
exact sequence: R

1 — I, = D, — (Frob,)? = 1

taking into account the fact that prime-to-p part of (Frob, )773 does not affect the

base change calculation done in Corollary 3.2 (1), we see that the image in R£0
of

b
Ry 3, ®olzt, 1 OlDg oll
is isomorphic to

D I ab
Rs, =85, p®oli, .1 OllDp ]l

where I qp is the image of I, in Dg%. This shows

QRD /R‘: _ = Ré)ygi.v ®ZP F.

08.p 034
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Then we obtain from (4.4) the following exact sequence:

(4.6) D IS™ B Qo gr ®T = Qs 1o ®T = 0.
P

4.3. SPECULATION ON THE ORDER OF THE TRIVIAL ZERO. Coming to this
point, we would ask when the morphisms ¢y in (4.5) and ¢p in (4.6) are injective.
If it is the case, the characteristic power series in J[[T]] of Sel*(Ads(¢p)),r,, would
have trivial zero of order > 3 s (m; —1)|Sp| at T = 0. On the other hand,
heuristically, the order of such zero should be equal to the number of linear Euler
p-factors vanishing at s = 0 of the complex L-functions L(s, Adg(¢)) if Adg(y)
is associated to a critical motive Adg(M) as in Example 2.7. More precisely,
we need to count the linear factors, vanishing at s = 0, of the modified p-Euler
factor defined [H96b] Section 3,5 (E), but in our case of Adg(M), the two numbers
match; so, we can use the number of such factors of the original p-Euler factor
of the complex L-function.

To speculate about the order of the trivial zero, we return to the situation in
Example 2.7. . Thus M is crystalline, F = Q, the coefficients of M is also Q, and
¢ is p-nearly ordinary of Borel-type. We write e, for the number of linear factors
in the Euler p-factor of L(s, Adgy(n)(M)) vanishing at s = 0. Then e, is the
multiplicity of the eigenvalue 1 of the crystalline Frobenius acting on the p-adic
crystalline realization He,ys(Ad(M)), which is equal to e, = n—1 and also to the
Z,rank of HO(D,,gr(Adsw(n)(®))). Here the graded module gr(Adspm)(¢)) is
defined with respect to the flag: (fil,). The number e, can be defined for general
@ (not necessarily associated to a crystalline motive) as follows:

ep = ranky H°(Dy, gr(Ads(v))),

where D, is the decomposition subgroup at p € Sr of £). We see easily (from the
argument proving Lemma 2.2) that under (RGr) and (Z, r)

(4.7) ep =myp — L.

When Spec(J) has densely populated points associated to critical motives
Ads(M), ¢ is forced to have values in either a symplectic or orthogonal group
G, because Ads(M) is not critical in the GL(n)-case (n > 2) (see Example 2.7
and Example 2.8). Since Sel*(Ads(¢)),/r., ®rd & QR‘:;/R{, ® J by Proposition
4.1, it might be natural to conjecture

CONJECTURE 4.2: Suppose that
(1) The group S is isomorphic to either Sp(n) or SO(n);
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(2) J € CNLp is an integral domain of characteristic zero;
(3) ¢: & — G(J) is nearly ordinary of Borel-type;
(4) Adg(y) is arithmetic in the following sense: for densely populated points
P in Spec(J)), Ads(v) mod P is associated to a critical motive.
Then we have the following two exact sequences:

0> PS>t - Qo /g1 ® T = Sel’ (Ads(9))/r = 0,
P

-1
0= @D ISI™ " = Qe gr ®F = Qs o ®T = 0.
p
The first exact sequence is known to be true, when ¢ is modular two dimen-
sional (see Corollary 5.4). We will prove as Proposition 7.1 the second exact
sequence in many cases where again ¢ is modular two-dimensional.
Anyway we note the following consequence of our argument.

THEOREM 4.3: Let F,/F be a Zy-extension satisfying (TR). Suppose that J is
an integral domain of characteristic 0. If Sel*(Ads(¢)),F, is of J-torsion for one
j >0, then Sel*(Ads(¢)),r.. is a torsion module of finite type over J{[T]] = J[[T']]
for T = Gal(F /F) = v%» with T =y — 1.

Proof: Let t = [[.(v — €(v)) € O[]}, where e runs over all characters of [’
of order p/. For M = @, J[Sy|™ ', M/tM is a torsion J-module (which is
killed by [T,.(1 —e(v))). Since th”j — 1, we have the following exact sequence for
Sel; = Sel*(Ads(¢)),r, from (4.5):

M/tM — Sel} /tSel}, — Sel} /tSel} — 0,

and we conclude that Sel%, /tSel’, is a torsion J-module. This implies that Sel%
is a torsion J{[T']]-module, because ¢ is a parameter of J[[T7]] over J. |

4.4. CONTROL OF TWISTED ADJOINT SELMER GROUPS. Now suppose that
pl|A| =[F: E] for A = Gal(F/E) and Fo, = FE for a Zy-extension Eq,/E.
We pick an absolutely irreducible representation 1¥: A — GL,,(F). We write
¥: A = GLp(0) € GL,,(J) for the unique lift of 9, that is, ¥y modmy = . It is
easy to see, under (RGg) and (Zp, g),

(4.8) ep(1) = ranky H°(Dy, gr(Ads(0)) ® ¥)

= (mp — 1) dimy HomA(]F[S',,],i).
If our speculation in the previous section is right, e,(¥) = 3, e, (¢) should give
the order of trivial zero of the characteristic power series in J[[T]] at T = 0 of
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Sel*(Ads(¢) ® ¢). We prove in this section that we have an exact control of the
Selmer group Sel*(Ads(p) ® ¢),F,, without error term if Homa (F[Sy], %) = 0
for all p; so, if Sel"(Ads(¢) ® ¥),r is J-torsion (as expected when Ad(yp) is
arithmetic), Sel*(Ads(¢) ® ¥),F,, is a torsion J[[T]]-module without trivial zero
at T = 0. We will show this last statement in many cases when G = GL(2) in
Section 6.

If we suppose that the 1-isotypic component J[Sr]{4| vanishes for Sp = LI, S;,
then we have from (4.5) and (4.6) that

(4.9) Sel*(AdS(‘P))/F,- [v] = QR;/RJI_ ® Iy = QR‘;’,‘/R;? ® J[y].

The above fact combined with {4.9) and Propositions 4.1 and 2.4 yields the
desired result:

THEOREM 4.4: Suppose that Homa (F[SF],¢) = 0 for an absolutely irreducible
representation ¥: A — GLn(F). Suppose p t [F : E), and let : A = GL,(O)
be the unique lift of ¢. Let E,/E be a Zp-extension in which p totally ramifies.
Let k: 8 — O[[I']]* be the tautological character inducing k : Gal(E/F) = T.
Then, for a generator v of I' = Gal(F,,/F) for Foo, = FE, we have

Sel(Ads(¢)) ®¥)/p. ., Sel'(Ads(p) @ ¥)/r
(v - 1)Sel*(Ads(@) ® ¥)/r, (v —1)Sel*(Ads(p) @ ¥K)/r
= Sel" (Ads(p) ® ¥)/ -
In particular, Sel*(Ads(y) ® ¥&);r is of J([[]]-torsion if and only if
Sel*(Ads(p) ® ¥),F is of J-torsion.

Example 4.1: Let p: & — GL3(J) be a Galois representation nearly ordinary
of Borel type. Then we consider the symmetric k-th tensor representation ¢ =
Sym*(p): & = GLg41(J), which is again of Borel type, and assume that ¢
satisfies (Zr) and (RGr). Then we have a decomposition valid over J:

k
Adsp(r+1)(p) = @ det(p) ™7 Sym* (p).

i=1

The component @; = det(p)™? Sym?% (p) has absolutely irreducible reduction
modulo my if for example Im(pmodmy) D SLy(F) and p > 2k 4+ 1. Since p
is nearly ordinary, ¢ and hence each of ¢;: & — GL3;j41(J) is nearly ordinary.
The Selmer datum of Adgpk+1)(¢) induces that of ¢;, that is,

Vi (9;5) = V" (AdsLrs1y (9)) ﬂV(‘Pj),
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and V' (AdsLtn)(9)) = @?:1 Vy (¢j)- Then we have the following isomor-

phism:
k

Sel(Adspk+1)(#)) /2 = @D Sel(v;)/z-
j=1

We now analyse how the module J[Sy]* with trivial TI-action in
Sel* (Ads(k+1)())/F, is distributed to Sel*(¢;)/F,. Fix a Levi-torus Ty of Py.
We thus have the character D, — T, (J), which induces the morphism of RGD:’L
into Ri. We claim that the Lie algebra of this torus t intersects with V'(¢;), and
the intersection is a rank 1 direct summand, that is, t = @?zl(tﬂ V(p;)). This
follows from the following fact: Let t, be the Levi-torus of the Borel subgroup
by C GL(2) with Im(p|p,) C bp(J). Then t, = Gy, x Gy, is a 2-dimensional split
torus in GL(2),;. The rational representation V(det™ @ Sym®) is then decom-
posed into the direct sum of weight spaces V(i) of t, for integers —j <7 < j on
which (t, s) € t, = G, x Gp, acts via the character (t, s) — ¢'s~*. In particular,
we have tNV(p;) = V(0) and V; (p;) = @, V(7) (if we order the two factors
G, of t, properly). This shows our claim.

From this, we conclude one component J[Sy] is distributed to each Sel*(y;),F,.
We thus have the following exact sequerices:

tr Sel*(@})/F *
4.10 J[S,] & Ty Sel* ()5 — 0,
( ) @ [ p] (7 __ 1) Sel (¢j)/Fm ((p])/F

(4.11) P 31Sp) B Sel*(w;) /5, = Selye(w;)/r, = 0,

p
where Sel};(;)/r, is the strict Selmer group defined in 2.1. In particular, we get
the following exact sequence:

Sel*(¢; @ ¥)/F..
(v = 1)Sel*(p; ® %) /p.,

where e(y) = dimgp Homa (F[SF], ) and the Selmer group is defined with respect
to Vy (p; @ 9) =V, (p;) ®o V(¢) for Artin representations 9: A — GLn,,(O).

Suppose that p is associated to a rank 2 pure motive Mg with critical
Adgy,(2)(M). This is equivalent to assuming the following three conditions:

(1) p is associated to a rank 2 regular motive M

(2) E is totally real;

(3) det{p)(c) = —1 for all complex conjugation c.
Then ¢, is associated to a motive M; = det(MV)? ® Sym® (M). The motive M,
is critical if and only if j is odd. Thus the Conjecture 4.2 predicts the injectivity
of vy for H =1, D for every odd j (see Example 6.2).

(4.12) Jew) - Sel*(p; ® ¥)/F — 0,
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5. Galois representations and p-adic Hecke algebras

To a cohomological Hecke eigen-form on a reductive group H,r, we hope to asso-
ciate a Galois representation into its Langlands dual G = H” over a sufficiently
large O. If H = GL(2),r for a totally real F, the association is known by the
work of several number theorists, notably, Shimura, Wiles, Taylor and Blasius—
Rogawsky. In this case, G = GL(2)/0. When the representation p: & — GLy(F)
is modular over a totally real F in an appropriate sense (see below) and is nearly
ordinary of Borel type, we can prove that the universal deformation ring R‘f; is
finite flat over an appropriate local Iwasawa algebra of the p-inertia group. The
idea is due to Mazur that this ring should be isomotrphic to an appropriate Hecke
algebra for H. After carrying out this task of identifying the deformation ring
with Hecke algebra (following the method of Wiles-Taylor and Fujiwara [Fu]),
the finiteness and flatness follows from my earlier works on -Hecke algebras [H88]
and [H89a).

It might look odd to study Hilbert modular forms for the extension F' rather
than looking into modular forms for the base field E. Although a A-invariant
2-dimensional Galois representation attached to a Hilbert modular form for ¥
(that is, a Galois representation modular over F') is expected to be modular over
E, this is a hard question in Langlands theory (Galois descent or base-change
in the automorphic side has not been fully established yet; see [HM]). However
assuming modularity over a bigger field F' (without assuming that over E), we
can prove many fine results on the adjoint Selmer groups, which we are going to
exhibit.

We keep the notation introduced in the earlier sections. In particular, we write
® = Gal(F(P®) /E), § = Gal(F®>) /F) and A = Gal(F/E). We like to identify
the various universal deformation rings with the corresponding Hecke algebras
constructed out of Hilbert modular forms. We assume that @ger = YN™ (m € Z)
for the global p-adic cyclotomic character N taking the geometric Frobenius
element Frobg at a prime q {p to N(q) and a finite order character x: § — O*.
We assume F to be totally real throughout this section.

5.1. PROPERTIES OF p-ADIC HECKE ALGEBRAS. We shall define the Hecke
algebra k7 (p™; O)F corresponding to the functors &% = ‘I’Z;L@),  for 7 =n.ord,
ord and ¢. Here we recall that p: $;, — GL2(A) € ®7-°7%(A) is called p-ordinary
if 8,1, is unramified. We call p p-ordinary if p is p-ordinary for all p € S L. We
define ®™¢ to be the subfunctor of ®7°"¢ made of ordinary deformations. We
put ®°7%(A) = 874(A) (8% (A). Under (RGL) and (Zr), ) for 7 = (¢,0rd)
and ord is representable by a universal couple (R7, Q?L).
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Let O = Op be the integer ring of ', and put O, = O®zZ, = Hpesp Op. We
write Z (resp. Cu4) for the center of H = Resoz GL(2) (resp. the connected
component of the standard maximal compact subgroup of H(R)). We consider
for each open subgroup U of Z(A(®)H (Z) the complex modular variety

X(U) = HQ+\H(A)+ /UZ(R)Coo1.,

where A is the adele ring of Q, A = A®) x R, H(Q), = H(Q H(A), and
H(A);y = H(A®)H(R), for the identity connected component H(R), of the
Lie group H(R). When U > Z(A(®)), we may regard X (U) as a modular variety
of Resp/g PGL(2).

We define open compact subgroups of H(A{®)) for an ideal N of F by

(5.1) Us(N) = {x € H(Z)| zmod N € B(O/N)} ,

(5.2) Upn(N) = {u € H(Z)| umod N € UB(O/N)} ,

(5.3) UL(N) = {(Z‘ Z) € Up(N)| (Z Z) = (; ’{) modN},

where Z = H&p”.me Z4, B is the standard upper triangular Borel subgroup of
GL(2),z, and Up is the unipotent radical of B.

We assume that the quotient field K of O contains o(F) C @p for all field
embeddings o : F < Q,,. For each embedding o: F — K, we have the projection
o: H(Q,) — GL3(K). We consider the space of a polynomial representation of
G

L(n,v;K) & ®(det(0)”" ® Sym®™ (¢))
for the symmetric m-th tensor representation Sym®™(a) of o: H(Q,) — GL2(K).
We regard n and v as linear combinations of embeddings of F into K with
coefficients n, > 0 and v,. To make things more precise, we take L(n,v; A) to
be the space of polynomials in {(X,,Y;)}ser, with coefficients in an O-module
A, homogeneous of degree n, for each pair (X,,Y,). We let v € U act on
P € L(n,v; A) by

(5-4) TP((Xo,Yo)) = det(v)" P((Xo, Yo)'o (75)"),

where ¢ =[], o(a)”.

By class field theory, we may regard the character x as a Hecke character
X: (Fléw))x /FY — O%, where F} is the subgroup of totally positive elements
in F*. Let ¢ be the conductor of x, in O = [[,,0p. When U C Ui(c),
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we define an action of H(Q) x UZ(A) on H(A)4+ x L(n,v; K) by v(z, P)uz =
(yzuz, x(2)upP) for u € U with u* = det(w)u™", v € H(Q) and z € Z(A). The
module L{n, v; A) with this extended action will be written as L(n, v, x; A). Note
that Up(c) € UZ(A( ). Then, for U C Up(c)Z(A™)), we define the covering
spaces X (U) —» X(U) by

(5.5) X(U) = HQ+\(H(A)+ x L(n,v,x; 4))/UCoos.-

Now we consider the sheaf of locally constant sections of X (U} over X(U),
which we write again as L(n,v, x; A). For d = [F' : Q|, we consider

(5.6) S(U; A) = HE,,,(X(U), L(n, v, x; A)).

we suppose that S(U; K) # 0 for a sufficiently small U.

Writing L(A) for L(n,v, x; A), we recall the definition of HZ,, (X (U), L(A)).
When n # 0 or d = [F : Q is odd, H,,(X(U),L(0)) is defined to be the
natural image of the compactly supported cohomology group H3(X (U), L(O))
in H4(X(U),L(K)). When n = 0 and [F : Q] is even, in H4(X(U), L(K)), we
have the space of invariant classes Inv(U) spanned by cohomology classes of the
connected components of X (U) (see [H88] Theorem 6.2). We then define

HYX(U), L(X))
H, (X(U),L(0))=Im (HS(X(U),L(O)) - () )

Once HE, (X (U), L(0)) is defined, we just put

(57) Hd (X(U) (A)) - cusp(X(U) ( )) ®o A.

cusp

01
tion 7); further, T(y) = y, *T(y) preserves the O-lattice S(U;O). We consider
the O-subalgebra h, ,(U) of Endg (S(U; K)) generated by T(y) for all integral
ideles y, which is an algebra free of finite rank over O.
We define a profinite group G by

On this space, Hecke operators T'(y) = [U(y O)U] naturally acts ([H88] Sec-

(5.8) G = Clp(p™) x OF,

where Clp{p™®} = (h_m_ ;Clp(p?) is the projective limit of the strict ray class

groups Clp(p?) of F modulo p/. The central action (z) = z;""2*[U2U] of 2 €
Z(A{®)) is seen to be naturally contained in h, (U), and hy, (U) is an algebra
over O[[G]] via the character
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In particular, if U = Up(c), (2,y) acts on S(U; K) via the character (z,y) —
27" "2y v although, if n = v = 0, the space is of weight 2 with the “Neben”
character x in classical sense.

We now gradually shrink U according to the deformation type 7 introduced
in the previous section to define the Hecke algebra associated to ?. There is a
subgroup W’ C G associated to the deformation type “?”. Thus we shall give a
definition of the universal Hecke algebra of type W for closed subgroups W C G.
We suppose that W = W+ x W~ with W~ € O and W+ C Clp(p*). Writing
7 Z(A)) = (Fém))x — Clp(p™) for the projection, we put

(5.9) UY == Y(W) {(Z Z) € Ur(p*)| ap € (1 +p°‘Op)W_}.

To each deformation type 7, we associate the following subgroup of G, and define
G'=G/W"

(510) W(b,ord — G, Word — O;, Wn.ord — {1}’ W¢ — CIF(pOO)

We look into the modular variety X (U ). We see easily that X(U¥") = X (U?)
for the following groups U. which may look a bit different from U in appear-
ance:

(5.11)  UTt=UG"), UTt=Un(®), ad U$=ZAULT

If we have several properties Pi,..., P, giving deformation type, we define
W PrPs by the subgroup of G generated by Wi for all j. The condition that
S(UY; K) # 0 for sufficiently large o implies that n + 2v = [n + 2v] Y. FaaC
for an integer [n + 2v]. Hereafter we assume that m — 1 = [n + 2v] when “?”
involves “¢ = xN™”. If the property “?” does not involve “¢”, k = (n,v) :
(z,y) — NF/Q(z)”["“”]y“’ factors through G’. If “?” involves “p = YN™",
the character: (z,y) — y~ for k = {n,v) factors through G?, because in this
case, we give the O[[G?)}-algebra structure of the Hecke algebra h(U2) by the
character: G? 3 y — T(y).

We have a commutative diagram for 0 < o < 8

SWY; K) —— SWUY;K)
7 7
SV K) — S(UY; K)

where T = T(y) and (z), respectively. Thus restriction of operators gives surjec-
tive O-algebra homomorphisms: h(UgV ) = h(UY). We then define

WU 0)p = Jim (h(UY),
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which is a compact local ring well defined independently of k = (n,v). Since the
projection maps take T(y) to T(y), we have well defined T(y) in A(UY;0). In
particular, for a prime element w, of F; (q1p), T(w,) and (w,) are independent
of the choice of wy, which we therefore write as T(q) and (g).

Writing h(UY;O)r = [],, hr as a product of local rings hr with maximal
ideal my, we write Ty (y) for the projection of T(y) to hp. Then we define the
nearly p-ordinary part of A(UY; O)r by

(Hecke) Y (p®; O)p = H hp.
Th(p)Ehy

We write in particular k7 (p™; O)p for AW (p>°; O)p if W = W”.
For each character K = (n > 0,v,¢,£) : G — O* given by

(2)T(y) = N(2) e (2)y~e(y),

we consider the s-eigen subspace S(U2"%; K)[k] of S(U?"%; K) for sufficiently
large a so that (g,£) factors through Clg(p*) x (O/p®)*. Then we define the
Hecke algebra h,(O) by the O-subalgebra of Endp(eS(UR°"%; K)[x]) generated
by T(y) and (z), where e is the idempotent of h™T¢(p>; O) in h(U%%; O).
Then this algebra is well determined only by « and independent of a.

As shown in [H89a] Theorem 2.4 (see also Lemma 3.10), we have a canonical
morphism for k: G/W — O* as above

() B (™, 0) Rojay @ = he(0),

which is a priori surjective and proven to be of finite kernel. Actually, we can
now prove that (x) is an isomorphism (for p > 3) purely in an automorphic way;
see [H99c]. Here we are going to show the fact via the deformation theory of
Galois representations. We write G, (resp. G7) for the torsion-free part (resp.
the maximal p-profinite part) of G’. From (), we conclude that the natural
map

(G*) h™ord(p™, 0) ®opay,m, Ol[GT]] - A (p™;0)

is surjective and has a O[[G]]]-torsion kernel of finite type. Here if ? involves
“¢”  the above tensor product over O[[G]] is taken via the projection: O[[G]] —
O[[G?]] twisted by N™~1; for example, if ? = xN'™, the morphism 74 sends
(z,y) € G to NI"™(2)y € O[[G?]]. This is because we have given O[[G®]]-
algebra structure via the algebra homomorphism: O[[G?]] — h® taking y € G¢
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to T(y). When “?” does not involve “¢”, the morphism - is induced by the
projection G — G”.

Now we list several other properties of A?(p™; () we need later:

(ff) There exists an O[[G?]]-free module M” of finite rank such that:

(1) R*(p*; O) acts faithfully on M;

(2) For each arithmetic prime P = Ker(x) € Spec(O[[G]]]), we have the
local identity: h’(p™;O)p = M} of A’ (p™; O) p-modules; in partic-
ular, h’(p™; O) is a torsion-free O[G;]}-module of finite type;

(3) Mrord ®0[G]], x> oG = M.

The assertion (ff) follows from [H89a] Theorem 3.8, where we have shown the
existence of a well controlled free O[[Gy]]-module M™% and M#°™¢ on which
the Hecke algebra acts faithfully. When F = Q, M%°™ is the L-eigenspace of
complex conjugation in eH},q, (X ord ) for the projector e = lim,_,o, T(p)™.
When F # Q, to construct M’, we need to take a division quarternion algebra
B over F unramified everywhere at finite places and most ramified at infinite
places, and M™°"? is given either by Y™° ¢ in [H89a] page 167 or by the “+”
or “~" eigenspace for complex conjugation of Y™ord according as [F : Q) is even
or odd. The module M#°® is constructed also similarly to the case of F = Q
using the modular variety X g(U) for B. The same construction applies to other
cases, using Xp(UL) = lim «XB(UY) in place of Xp(UZ%°¢) in [H89a).

A prime ideal P of a local ring A7 of h?(p™;0) is called arithmetic if
P N O[[G"] coincides with Ker(x) for a & = (n,v,€,£) withn > 0 (& n, > 0
for all ¢ : F < Q). For an arithmetic prime ideal P of h?, we write O(P)
for the p-adic integer ring of k(P) = (h’/P) ®0 K. Regarding P as a point
P: h" — O(P) of Spec(h’), we can associate to P a unique Hecke eigenvec-
tor fp € S(U™4 k(P))[x] with f|T(y) = P(T(y))fp and a Galois represen-
tation pp: Gal(Q/F) — GL2(O(P)) ([T) and [BR]; see also [H89b]). We call
7 modular (of level p) if there exists a local ring A™°"® of A™°"(p>; ) such
that p = ppmodmeppy for an arithmetic point P € Spec(h™°™4). Hereafter
we assume p is modular of level p, and write h” for the local ring of h’(p™; O)
covered by h™°"¢ under the map (G’). We assume the absolute irreducibil-
ity of p (AIr). Under this condition, we may assume that pp itself has values
in GLy(h"/P), and then the isomorphism class of pp over h’/P is unique (cf.
Carayol [Cr]). Since the projector e = lim,_,o, T(p)™': A(UL,; O) = h*(p*™;O)
kills the p-old part, the algebra h’ is reduced if p satisfies (RGr). We now list
some properties satisfied by pp.

(rep) We have a Galois representation pr: $ — GLa(h?) which is my--adically
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continuous, and pr mod P is isomorphic to pp over h’/P for all arithmetic
points P € Spec(h’);
(NO,p) p- is nearly p-ordinary with the property “?” and satisfies 6 ,, o([y; p]) =
Ta(y) for y € Fy;
(Ch) det(1 — ps(Frobg) X) = 1~ T(a) X -+ x(Frobg) N(a){a) X € h*[X] if g p.

5.2. UNIVERSALITY OF HECKE ALGEBRAS. Here, using Fujiwara’s result as a
seed, we identify h% with the universal ring R} under appropriate conditions.
We suppose hereafter in this section that the order of x is prime to p and ¢ = yN
(i.e. m = 1). Let kg € Spec(O[[G]])(O) which is induced by the trivial character.
By our definition, ¢ factors through G?. Then by (k), A’ ®ofiay,x O is an O-
module of finite type, and its maximal torsion-free quotient £* is canonically
isomorphic to the local ring of h.(O) corresponding to the deformation of p.
When F = @, h* is the direct local summand of the Hecke algebra of weight 2
with “Neben” character x in the classical sense. We write h%:°"¢ for h*® because
it should corresponds to ®%°%.

Let I, o5 be the image of the inertia group I, in the maximal p-profinite abelian
quotient Dgf’p of Dy. We put Ir = [[,cs, Ip,ab- We have a character J, =
[1,1p 91.00° IF = R, and hence RL is an O[[Ir])-algebra via §,. By local class
field theory, the inertia group Iy can be identified with the maximal p-profinite
subgroup of Oy = le » O,'. By global class field theory, we may regard det o’ as
a character of Clg(p™) with values in R%. Thus R} also has a natural algebra
structure over O[[G]].

Now we consider the following two conditions:

(NRp) F is unramified at p;
(LD,) F is linearly disjoint from Q(g,) over Q, and Fy for F = F®q Q) is
p-torsion-free.

Then the following result is shown by K. Fujiwara [Fu]:

THEOREM 5.1 (K. Fujiwara): Let p be an odd prime and x: £ — O* be
a character of order prime to p. Put ¢ = xN. Suppose (NR,) for F,
(Al ( \/HT”/_%))’ (RGFr) and that p is p-ordinary. Then we have
(1) The pair of the local ring h%°™ = h* and its Galois representation p,, =
PKer(ro) TEPTEsents the functor @;’;d’d’;
(2) R&™® o pdomd = pro as O[[Ggrd]l-algebras and h= = ME™ as RGO
modules, where M., is the localization of M’ at the maximal ideal m of
h;



Vol. 120, 2000 ADJOINT SELMER GROUPS AS IWASAWA MODULES 407

(3) The ring ng:"'d is a local complete intersection. In other words, R?gord =
OlTy,....T.))/{f1,.-., fr) for a regular sequence fi,...,f, in a formal
power series ring of r variables O[[T1, ..., T;]].

According to Fujiwara, we can replace the condition (NR,) by the weaker con-
dition (LD,) if 5 is not flat at p. Irreducibility over F(1/(—1)(P=1)/2p) and linear
disjointness of F from Q(pp) are used to find primes g outside the ramification
of 7 such that N(q) = 1 modp™ for any given integer m > 0 and p(Frob,) has
two distinct eigenvalues in F, by the help of [DT] Lemma 3, which requires the
surjectivity of the Teichmiiller character modulo p. They are also used, as in
[TW] Section 2, to find an auxiliary prime ¢ such that

(1) The local components of the Hecke algebra (associated to 7) of minimal

level and of level v added are isomorphic;

(2) The modular variety of level t added is smooth, yielding torsion-free (or

p-divisible by duality) cohomology group with coefficients in O.

The use of auxiliary level t should be removable, in the non-flat case, taking
a sufficiently large p-power level (to assure smoothness instead of adding an
auxiliary level t) and then returning to level p by taking G-invariants (cf. [H89a]
Lemma 3.10). If 5 is non-flat at p and ordinary, the local condition: u,(F,) = {1}
can be also removed by using fixed determinant condition: detp = ¢. If p is
flat at p|p, we need to assume that p is unramified over Q, otherwise, the flat
deformation problem is not well posed. Once the p-flat deformation problem is
representable by a local component of the Hecke algebra of level p removed (as
proved by Fujiwara under the unramifiedness of p), one can proceed as Wiles
[W] (3.11) to prove the universality of the corresponding local component of the
Hecke algebra of p-included level for the deformation problem (ord, ¢) (that is,
the Selmer deformation in [W]). In this process, a lemma (due to Ribet; [W]
Lemma 2.3) used by Wiles can be replaced by a similar one due to Taylor [T]
Lemma 4 Case 1, when F has even degree over Q. When F' has odd degree over
Q, first take a totally real quadratic extension F'/F unramified at p, then prove
the result over F’, and finally descend to F as in [DHI]. Thus in the non-flat
case, one gets the above result over the layers F;. In the p-flat case, assuming
p is unramified in F, we have the above result at the bottom F (but not over
the layers F;). We should mention that Fujiwara’s result actually covers Hecke
algebras with (minimal) auxiliary level outside p. Anyway we now suppose the
assertion of the above theorem and try to generalize it for other types “?” of
deformation:

(univ) the pair of the local ring h*® = A%®°"® and its Galois representation Pro =
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PKer(x) T€presents the functor ®54? and hPord = ME? as RETL
modules.

(cpi) the local ring R?}‘md is a local complete intersection over O.

Let ¢’ be any continuous arithmetic character ¢': $ — O* with ¢ =
émodmep. We suppose that ¢’ induces x: G°™¢ = Clp(p™) — O, identify-
ing Clp(p™) with H°. For each p € @g (A), p modulo the ideal a of A generated
by é,(c) — 1 for o € I gives a p-ordinary deformation. Every p-ordinary defor-
mation, which is a specialization of p, is a specialization of pmoda. Thus we
get

(Isom) R} ®oyr,y O = RE*?,

R @oqry O = RE? and RF? @oyagra O = REHY.

Note that A% is isomorphic to the subalgebra of h™°"® generated by Tr(pf_or &)
where pﬁl‘ord = pr.ord ® (¢ det(pp.ora)"1)/2, without assuming (Alg). This
follows from the following fact: M7-o¢ = M,f@)(’)[[GZ’d]], where G2 is the
maximal p-profinite quotient of Clp(p™) (see [H99b] Chapter V Theorem 6.1,

i

[H97a] Section 2 and {HM]). This shows pﬁ. ord = P

Tensoring characters with representations can be performed both on the Ga-
lois side (R%) and on the Hecke side (h%), independently. Moreover, for each
irreducible automorphic representation w of H(A), 7 ® £ = =« for a character £
can happen only when 7 is an automorphic induction from a quadratic extension
of F and ¢ is the quadratic character associated to the quadratic extension ([L]
Chapter 11 or [DHI] Lemma 3.2). This shows

(TP) hrord = p?' BoO[GTY] and  h?/™ 2 h? @o O[]

on the Hecke side (cf. [H97a] Proposition 2.1 and [H99b] Chapter V Theorem 6.1).
On the Galois side, the natural transformation ®™°"%(A) 3 ¢ s (€%, det(€)) €
3% (A) x ®(A) induces

(TP)  RE7* = REBoO[Gy)] and RE/™ = RE&oO[I)).

We write ay, for the augmentation ideal of O[[Ir]]. We have the following
commutative diagram with surjective arrows for the arithmetic character ko =
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(0,0,id, id):
L Rqu‘ h?

| |

Ry = R%/ar, RYy —— h®/as h?

| |

n . p¢ord ko — pPord ~ +
/" : R%: heo = hord o pr

We lift 1 € hro = M2oTd — M,f{/aIFM.{’?‘ to an element my € ME. Consider
the h¢-linear map T: h® — M given by T(6) = 0myg, which is surjective by
Nakayama’s lemma and is injective because h? acts faithfully on M. Thus h? =
Mg, which is O[[Gf,’]]—free of finite rank. Suppose that " is an isomorphism (&
(univ)). This implies, again by Nakayama’s lemma, ¢ has to be an isomorphism.
Then by (TP) and (TP’), we further get R%°" = h%°™¢. By (Isom), we also
have R} = h} for 7 = “ord”, “(¢',ord)” and “¢’” for any arithmetic character
¢ H — O% with ¢ = ¢modmp. We can give a simpler proof of the fact:
R} = p%. without using the modules M, but assuming that F is p-torsion-free
(see [HM] Section 4). We record what we have proven:

THEOREM 5.2: Let p be an odd prime. Let x: $ — O* be the Teichmiiller lift
of a character with values in F*. We put ¢ = yN. Let ¢': § — O* be an
arithmetic character with ¢’ = ¢ mod me. Suppose that p is p-ordinary, modular
of level p and satisfies the deformation property: “¢”. If h* satisfies (univ),
then for any combination ? of the properties: “n.ord”, “ord” and “¢'”, (h*, p2)
represents ®%.

COROLLARY 5.3: Let the assumption and the notation be as in Theorem 5.2.
Then

(1) A7 is O[[G]]]-free of finite rank. For every arithmetic character K =
P
(n,v,g,&) of GZ, with n > 0, we have h’ Solc? - O = h=,
(2) More generally the morphism

(G") K™ ®ojia,),m OlGH] = A7

is a surjective isomorphism.

(3) If R%:°™ = hro is a local complete intersection over O, then K" is a local
complete intersection over O[[G,, /W] for a subgroup W C G, with torsion-
free G, /W, in other words, kW is O[[G,/W]|-free, and

WY 2 O[Gp/WII[Ty, ..., T/ (f1s- - - fr)
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for a regular sequence fi,..., fr € O[[Gy/WI[Th, ..., T+]]-
@) It Rﬁ.’ord o p*o js a local complete intersection over O, then h* is a local
complete intersection over O for any character k: G, — O.

Proof: The assertions (1) and (2) follows from the proof of the theorem. We
shall prove (3) and (4). By the assumption (cpi), we have an isomorphism

heo 2 O[Ty, .., T/ (Fiy s Fr)-

We write #; for the image of T; in h*0. Then we lift it to t; € h™°™ so that
t; ®1 =1t; under h™°" @y, O = h*. Then we define a surjective OG-
linear map 7: O[[G,)]([T,...,Tr]] = k™" by Tj + t;. Then

Ker(r) ®ojie,) O = (F1,- -0 fr)

because h™°"¢ is O[[G,)]-free. Then by the Nakayama’s lemma, taking f; €
Ker(m) so that f; ® 1 = f; under Ker(r) ®oyg, © = (f1,-.-,fr), we have
Ker(w) = (f1,..-, fr). Thus we see

Bt 2 O(GI[T, - T/ (fuo- o ).

Let a be an ideal of O[[G,]]. By definition, we see

R @ o, OlIG)l/a = (OG/OTy, .., T/ (F5, -, £2),

where f7 is the image of f; in (OGp))/ [Ty, ..., Tr)). If

O[[GPH/a = O[[Slv LR St7 Ul» ceey Us]]/(gla v ags)
for a regular sequence g1, ..., gs, we have

O[S, ..., 86, U1, ..., Uy, Tty o, Tl
(gl)'~'7gs7ffa'-'af79)

This shows the assertion (3) (resp. (4)) by taking a to be the kernel of the
projection: O[[G,]] = O[[G,/W]] (resp. &: O[G,]] = O). |

pm-ord Roqe,) OllGpll/a =

Remark 5.1: For p € ®%°"%(A), we define a character 6,0 Ir — A* by
[l 91,06+ For each & = (n > 0,v,¢,£) as above, let ¢ = ¢N["+2”]w;["+2u]e,
where wy, is the Teichmiiller character at p. Then we consider the following
deformation functor of weight x:

D (A) = {p € &% (A)| 8,: Ir — A* coincides with [y, p] — g‘”{(y)} .
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In particular
B, (A) = { pedh(A)| pis p—ordinary} = d*rd(4).

Then it is easy to conclude from h™°rd ®ofa, I« O = h" that (h*, p,) represents
the functor ®,, under the assumption of Theorem 5.2. Then the argument which
proves Theorem 5.2 shows that

(h ps.) = (RE, ™)
under the assumption of Theorem 5.2.

COROLLARY 5.4: Let the notation and the assumption be as in the theorem.
Let Spec(J) be a closed irreducible subscheme of Spec(h™°™%) of characteristic
0, and write : $§ — GLa(J) for the representation induced by pn.orq. Sup-
pose (univ), (cpi) and that that there exists an arithmetic point P € Spec(J).
Then Sel*(Ad(p)),r is a torsion J-module of homological dimension 1, and the
following sequence is exact:

0— J[SF] — QR?/R{, ® J — Sel*(Ad(y)),r — 0.

In other words, the first exact sequence of Conjecture 4.2 holds for .

Proof: We may assume that Spec(J) C h®. We know R(ISL(2), r = O[[Ir]] and
R{ = O[[Iy]] for the image I, of Ir, in Ir. By the exact sequence (4.3), we have
the following exact sequence:

J[SF] Qpo /g @ J = Sel”(Ad(p))/r — 0.

Since O[[Ip]] = O[[I]|[[T1, ., Ts]] with s = |Sp| and R% is free of finite rank
over O[(Ir]], if ¢1 is not injective, Sel*(Ad(y)),r cannot be a torsion J-module.

Let us first deal with the case where J = O. Then Spec(Q) is a closed sub-
scheme of Spec(h®) for the arithmetic character x induced by O[[G]] — h® —»
J = O. Since h* is reduced and free of finite rank over O, Qux /0 is a finite
module. Thus by Theorem 2.3,

Sel” (Ad(¢))/r = Qs jofi15)) Bne I
= Qe jofi1r)) @ofire]] B One I = Qpejo @nn J
is a finite module. This shows the injectivity of +; when J = O.

In general, specializing to J/ P, we get an isomorphism Sel*(Ad(¢p)),r®;J/P 2
Sel"(Ad(¢ mod P)),r, which is a finite module. Thus Sel*(Ad(¢)),r is a torsion
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J-module, and the same argument as above proves the injectivity of ¢; for general
J.

Now we study the homological dimension of Sel”(Ad(y));r over J. Here if
0—->P, 5P, 1>+ — FPp— M- 0is a minimal projective resolution of a
J-module M, the number n coincides with the homological dimension hdimy M.
Since

h¢ = O[I)|[Ty, . .., T/ (fay- - oo fr)

for a regular sequence fi,..., f,, we have the following exact sequence:
@ h¢dfj — @ h¢de — ths/o[p'pn — 0.
J J

By tensoring J over h?®, we get another exact sequence:

P 3df; 4 @ JdT; — Sel (Ad(¢)) — 0.
J J

Since Sel*(Ad(yp)) is a J-torsion module, + has to be injective, and thus we
conclude
hdimﬂ Sel*(Ad(go))/p = 1.

This finishes the proof. ]

6. The order of the trivial zero

We continue to assume that F' is totally real. We like to see the exact order
of the zero at T = 0 of the characteristic power series of Sel*(Ad(y)),F,, for
a modular representation ¢: $ = Gal(F(P*)/F) — GLy(J). We prove, under
some conditions (including (univ)), the Selmer group Sel*(Ad(¢)),F,, is a torsion
J[[T])-module of finite type with trivial zero at T = 0 of order e, = {SF|. For that,
we need to assume a condition equivalent to the exactness of the second sequence
of Conjecture 4.2, which is the non-vanishing of a certain jacobian determinant

in J (Conjecture 6.2). This conjecture will be proven in Section 7 in some cases.

Suppose that ¢ extends to & = Gal(F(»>™)/E) — GLy(J) for a subfield E
fixed by A C Aut(F/Q). Then if p 1 [F : E}, it follows from the above result and
the consideration in 4.4 that Sel*(Ad(y) ® ¥),g,, is torsion J[[T]]-module with

trivial zero at T = 0 of order e,(1) = dimgp(Homa (F[SF], %)) for any absolute
irreducible representation %: A — GL,,(O) with ¥ = ¥y mod me.
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We take a finite order character x': § — O* and put ¢' = Y’ N™ for an integer
m > 0. We define a finite order character ¢ = xN so that ¢’ = ¢ modme and
x: G = O* is of order prime to p. By (TP’) in 5.2, we may assume Spec(J) C
Spec(h®') without losing generality. In what follows, F/E is always a Galois
extension with Galois group A. We assume p t [F' : E} throughout this section.

6.1. ANOTHER DEFINITION OF HECKE ALGEBRAS. A representation p: § —
GL2(O) with det(p) = ¢' is said to be modular nearly ordinary (of level p™®)
if (i) it is nearly ordinary of type {B,} for Borel subgroups B, C GL(2) and (ii)
there exists a Hilbert modular form f such that

(1) f is a Hecke eigenform of p-power level and gives the representation p;

®) FIT(y) = 6,(([y, Bl)pip) S for all y € F and all plp,
where [y,p] = [yp, p] is the local Artin symbol and 4, = [], 61,pp: Dap — O.
Then we just make the maximal quotient h = hg (¢ CNLp) of R?’ such that
for all modular nearly ordinary deformations p: $§ — GL2(O) of 5, the morphism
L R‘g — O associated to p factors through h. By definition, A coincides with
h?'.

For each modular deformation p as above, one can associate a pure rank 2

motive M,/ with the etale realization V'(p) except for a few cases of weight 2
BR]). The Hodge type of M, ®F, C is given by
p OF,

(ne + 1+ 95,05}, (Vo,ne +1+1v,) withn, > 0.

By the fixed-determinant condition, n, +1+42v, = m for all : F < Q. Therefore
v =Y, U,0 determines n,, and m —2v, + 1 is the classical weight of the Hilbert
modular form f in (2) associated to p. By near-ordinarity, we see

o[ 0)pip) =@y =€) [I @)™ forallye o) =]]Of
p

0: Fp—Q,

for a finite order character £. Then, under our terminology, the modular form f
has weight £ = (n > 0,v,¢,§), where ¢' = xeN™ (i.e. X'|1, = xe). We identify v
with a character of Iz and then with a homomorphism of O-algebra v: O[[Ir]] —
O € Spec(O[[IF]])(O). We thus have ¢’ = ¢, for ¢, as in Remark 5.1. Then
by Remark 5.1, (h*, p) represents @, under (univ). For any irreducible closed
subscheme Spec(J)} in Spec(Rﬁl), a point P € Spec(J){(O) is called arithmetic if
it induces a character y — £(y)y" for a finite order character £ and v =" v,0
with v, € Z. Thus if P is arithmetic, the Galois representation ¢jmod P is
associated to a classical Hilbert Hecke eigenform and a pure rank 2 motive.
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6.2. CONTROL AND TORSION THEOREMS FOR THE ADJOINT SELMER GROUPS.
We take a Zp-extension Fi, / F satisfying (TR) as in Section 4 and use the notation
introduced there. We recall that Dy = [] g, Dy, where Dyl is the maximal
p-profinite abelian quotient of the decomposition group D, at p of H;. We write
I, = HpeSL I, b for the inertia subgroup I .5 of Dgf’p. We define I; (resp. D;)
by the image of Ir_ (resp. Dr,,) in I, (resp. Dp,;). By local class field theory,
I; is isomorphic to a p-profinite subgroup of O;.fp = (OF, ®2 Zp)* which is made
of universal norms from F, ;. In other words,

Ip,/I; 2737 and Dp,/D; =T3°

for I'; = Gal(Fw/F) under total ramification of Fo/F at p: (TR). Thus
OllIF]] = O[[Lo))l[T1, - - -, Ts)] with s = |Sp| for parameters Ty,...,Ts.

Note here that R} = O[[I;]]. Thus we have from Theorem 2.3 that

Sel"(Ad(po))rr = Cpg_joqiren @, I-

Here we mnote that O[[[]] is a gigantic non-noetherian ring close to
O|[(®pZy{[T0,p]])]]; nevertheless, we have already shown in Theorem 4.3 (see
below) that Sel*(Ad(yy))/F., is a torsion J{[T']]-module of finite type if Spec(J)
contains an arithmetic point, supposing (univ) for F; for all § < oo. Therefore

R?-.’w is miraculously close to O[[I]]. Here is a direct consequence of Theorem
4.3:

THEOREM 6.1: Suppose (Alr), (RGr) and (univ) for F. Let Spec(J) be a closed
irreducible subscheme of Spec(h?;,) containing an arithmetic point.
(1) If Sel*(Ad(@y)),r = 0, then we have h% = O[[I¢]).
(2) Suppose (univ) for F; for one 0 < j < oo. Then Sel*(Ad(py)),/r., is a
torsion J[[T']]-module of finite type.
(3) Suppose that g extends to ¢: & — GLy(J) and Homa (F{SF], ) = 0 for
an absolutely irreducible Artin representation ¥: A — GL,,(O). Then if
Fy = ExF for a Zy-extension Eo [E,

Sel*(Ad(pg) ® ¥) k., =0 <= Sel*(Ad(y1) ® ¥)/5 =0,

and Sel* (Ad(p) @ V)&, is a torsion J[[T']]-module of finite type. Moreover
if (cpi) holds for F and J is a regular local ring,

hdimyzy Sel*(Ad(v) ® ¥) /B, = 1,

and Sel*(Ad(g;) ® ¥),&., has no pseudo-null J{[T]-submodule non-null.
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Proof: If Sel(Ad(yy)),r = 0, then Q41 /517, ® J = 0 and by Nakayama's
lemma, Q6o = 0 and hence R% = h¥ = O[[Ig]).

The torsion-ness of Sel*(Ad(¢y)),r,, (the assertion (2)) follows from Theorem
4.3 and the J-torsion of Sel*(Ad(yy)),F, for all finite j (see Corollary 5.4).

As for (3), under the disjointness of F[Sr] and ¥, Sel*(Ad(p)) ® ¥), ., is well
controlled (see Theorem 4.4). Thus

Sel*(Ad(py) ® ¥)/r, =0 <= Sel"(Ad(y;) ® ¥),r =0.

Write M = Sel”(Ad(p3) ® ¥)F, , and suppose M # 0. Then by Proposition
2.4 and Corollary 5.4, M is a torsion J[[T]]-module of finite type. We know
again from Proposition 2.4 and Corollary 5.4 that hdimy M/TM = 1. Then by
a theorem of Auslander and Buchsbaum ([M] Theorem 19.1),

hdimg M/TM + depthy M/TM = depth; J.

Since J is regular, J[[T]] is regular, and hence by a theorem of J.-P. Serre,
hdimyzy M < oo (see [M] Theorem 19.2). Again by a theorem of Auslander
and Buchsbaum, we see

hdimyry M + depthyry M = depthyzy J[[T]] = depth; J + 1.

Since M/TM is a torsion J-module, depthyyzy M = depthy M/TM + 1. This
shows that
hdlmj[[T]]M = hdimj M/TM = 1,

and we are done. ]

To get a control result when Homa (F[SFr],¥) # 0, we need to assume the
exactness of the second exact sequence in Conjecture 4.2, since we know the
exactness of the first. We like to interpret this exactness in terms of Hecke
operators. We number the prime ideals over p of F as py,ps2,...,ps- As already
remarked, Ir/Iy = T'S7. Thus we can choose a set of parameters Ty,...,T, €
O[[IF]] so that O[[Ir]] = O[[Lo)][[T1, . . ., Ts]]. We take a uniformizer {w;} of F},
which is a universal norm from Feop, = UJ; Fjp,. Let Spec(I) be an irreducible
component of Spec(fp) {thus I is a torsion-free O|[/f,]]-module of finite type)
containing Spec(J). Then we write ¢,, for the image of T(z;) in I. The element
tp, is unique up to multiplication by Iy C O[{Ip]}* C I*. Since dt,, € Qpo())

is the image of p; € I[Sr| under the map: I[Sg] — Q, o ® I in Conjecture
F

/Olo)]
4.2, for any element 1 € I which kills the I-torsion module Sel*(Ad(yr)),F, ndt,,
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is a linear combination of dT}; by the exactness of (4.5). Thus

7° det ((th,:;) el

Since we have from Theorem 2.3 that, for R = R“Fs",

Sel*(Ad(v3))/r = Qr/ofuey ®r J
= (Qr/oqze ®r 1) @17 = Sel*(Ad(wr))/F @17,

if Sel*(Ad(yy));F is a J-torsion module (which is true under (univ) and the
existence of an arithmetic point in Spec(J)), we can find 7 as above with 7(n) # 0

in J. Thus we can think of
— 6tpi
J=n (det ((')Tj))

in the field of fractions of J under these assumptions.

CONJECTURE 6.2: Suppose (Alg) and (RGp) for pp = pymodmy and that
Spec(l) contains an arithmetic point. Then

atPi
does not vanish in the field of fractions of J, where n: 1 — ] is the projection
map.

Note that the conjecture for J = I is equivalent to the analytic independence of
{tp.} over O[[I]]. Since t,, = b1,4,p,(Frob) for the Frobenius element Frob € Hp,
at p;, the image under the natural map: J[Sr] = QR.;:/O[[DO]] ®J of p; € J[SF]
is dtp,. Thus the above conjecture is equivalent to the exactness of the second
sequence in Conjecture 4.2.

THEOREM 6.3: Let the notation and the assumption be as in the conjecture.
Suppose (univ) for j =0 and J # 0 and let s = |Sp|. Then we have
(1) If Sel*(Ad(yy))/r =0 and J € J, then

Rf = Ry = O[D;ll, Ry = b = O[[D; x Clr, (5™),]
and  Sel*(Ad(¢y))/r.. = J[SF],
where Clp, (p™), is the Galois group of the maximal p-profinite abelian

extension unramified outside p and oo over F;. In particular, (univ) holds
for all § > 0.
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(2) Sel*(Ad(gy))/F.. is a torsion J[[T')]-module pseudo-isomorphic to J* x M,
where

M =Qpy 0(D.) ®re, I-

Moreover M/TM is a torsion J-module of finite type.
(3) Suppose that J is normal. Write ®(T) C J[[T]] (resp. ¥(T)) for the char-
acteristic ideal of M (resp. Sel*(Ad(gy)),r.,). Then we have

U(T) = ®(T)T°, ®(0)#0 and ®(0)|Jn,

where n is the characteristic ideal of the J-module Sel*(Ad(yy))/p. We
have made use of the convention that ®(0) = (®(T) + (T)/(T)).

(4) In addition to the assumption of (3), we further assume (cpi) and that J is
a regular local ring. Then the characteristic ideals in (3) are all principal,
and we write ®(T), ¥(T) and n for the generators of the characteristic
ideals. Then Sel*(Ad(yy))/r., is a J[[T)]-torsion module of homological
dimension 1 and has no pseudo-null submodule non-null. Moreover, we
have ®(0) = Jn up to units.

Proof: We have two exact sequences:

(6.1) 0 — J[SF] 5 Qpe soqzoy ® I — Sel*(Ad(p))/r — 0,
(6.2) 0 — J[SF] fP)QRﬁ;/O[Uj”QbJI—)QR%/R;, ®J 0.

From the assumption of (1) and the above sequences, we conclude

because J € J* implies that Im(:;) = Im(:p). By (4.2) and Nakayama’s lemma,

we see QR‘;;;/O[[DJ-]] = 0 and thus R?”,- £ h‘f,j = O[[D,]]. This shows that
Sel”(Ad(¢y))/F.. = Qo(pa])/ 0111 @ I = J[SF)-

The identity R?‘Jord = h}f’"‘i = O[[D; x Clg, (p™)y]] follows from (TP) and (TP’).

This shows (1).

We now prove (2). We may assume that ¢,,,...,t,, € O[[Ir]] inside L, since the
argument with suitable modification works well without this condition replacing
tp, by analytically independent ¢, in O[[Ip]]NOty,,...,ty,]] C L. Write R; for
R, A; for O[[D;]], A for O[[Ip]] and M for Qr_ ;4. ®r., J. Let

Jj = Ker(Rj — ]I)
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We have the following commutative diagram with exact rows and columns:

0 Qa; /0111, @4, I == Qa; /01,1 ®4; T — 0

l : /

(J5/3) 813 —— Qg j0(1,) ®R, I —"— Qo1 ®1T — 0

(6.3) zlll 9 h
(J3/72) @13 4

Qr;/4; ®r; J Qja, 013 —0

0 0 0.

Since J # 0 implies injectivity of f and e, from this sequence for 5 = 0o, we have
the following exact sequence:

0— Qg /o[ ©J B M x (o1 ®13) > Qujag @13 =0,

where a(m, a) = d(m)—h(a) and B(a) = (g(a), b(a)). Since Qy,4,@1J is J-torsion
by J # 0, it is J{[T]}-pseudo-null. Again by J # 0, tp(J[SF)\(Q1,0[116) @1 J) is
J-torsion and hence is J[[T]}-pseudo-null. Since

Sel* (Ad(p))/F.,, = QR /0Tl @ T,

this shows the assertion. By (4.2) applied to H = D, we have M/TM =
Qpr,/4, Oro J. The latter differential module is a J-torsion module, because
the two exact sequences of Conjecture 4.2 are both exact by our assumption.
Thus M is a J[[T']}-torsion module, and hence Sel*(Ad(y)),r., is a torsion J[[T]}-
module of finite type.

By (2), ¥(T) = ®(T)T* and ®(0) # 0. To see (3), we only need to prove
®(0)|Jn. Since Oftp,,...,ty,]] C O[IF]] inside I as we may assume, we see
tp brings J[Sr| inside Im(sy). Then N = Coker(sp : J[Sr] — Im(er)) has
homological dimension < 1 and is J-torsion, and the characteristic ideal of N is
generated by J. On the other hand, we have the following exact sequence:

0N = Qpry/o(po)] ® T = Qro /o1 ® T — 0

from the first exact sequence of Conjecture 4.2, which holds in our case (Corollary
5.4). Thus the characteristic ideal of M/TM = Qg oD, ® J is given by
Jn, and M/TM has homological dimension < 1. In particular, depthj[[T]]M =
depthy M/TM + 1. Anyway we have ®(0)|Jn.
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If we further suppose that J is regular, then hdimy;ry M < oo, and therefore,

hdiln_u[[T]] M+ depthM[T]]M = depthj[[T]].]I[[T]] = depth_u.ﬂ +1 and
hdimy M/TM + depthy M/TM = depthy J.

Since we already know that depthy(r; M = depthy M/TM+1 and hdimy M/TM
< 1, we conclude hdimyyry M < 1. Then ®(0) = Jn because M has no pseudo-
null module non-null. By the exact sequence (6.2) for j = co, we conclude

hdimy gy Sel* (Ad()) /. = 1,

which finishes the proof. |

The following result follows directly from the above theorem and Proposition
2.4:

COROLLARY 6.4: Let the notation and the assumption be as in the theorem.
Suppose that Fp, = ExF for a Zy-extension E/E and ¢r has an extension
©E: & — GLy(J). Then writing e(1)) for the dimension of Homa (F[SF], ¥) over F
for an absolutely irreducible Artin representation ¢: A = Gal(F/E) — GLn,(0),
the characteristic ideal of Sel*(Ad(wE) ® ¥),g,, has trivial zero of order e(¢)) at
T = 0. If] is regular and (cpi) holds for F, Sel* (Ad(¢g)®v), k., has homological
dimension 1 over J{[T1].

Example 6.1: Let F = Q and Fo, = Qu be the cyclotomic Z,-extension.
Suppose that 7 is associated to a p-ordinary Hecke eigen-form f € S™¢(Io(p))
(k > 2). The condition Qpors;ory) = 0 ( < h‘/’b‘i = O[[T]]) is equivalent to
the fact that there is no congruence between f and any other Hecke eigenforms in
S;:Td(ro(p))(§ Szrd(SLg(Z)) ifk > 2) This condition: Qhord/o[[IQ]] = 0 is satis-
fied for p = 11 and f(2) = A(2) — BA(pz) € S12(To(p)), where A =327 | 7(n)q"”
is the Ramanujan’s function A € S13(SL2(Z)) and 8 is p-adic non-unit root of
X? — 7(p)X + p'* = 0. Thus identifying ho"® with O[[[]] & O[[W]] for the
weight variable W = v — 1, we can regard T(p) as a power series a(W). Let
J = hord = O[[W]]. Then a(y!! — 1) is the coefficient of f in ¢?, and

_ 8a _aly-1)-a(y" - 1)

mod my.
On the other hand, for this f, we have

a(y—1) =1 and a(y" — 1) = 7(11) = 534612 mod 11'*,
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and a(p; A) — 1 = 534611 = 7-11-53 - 131. Y. Maeda* has checked this non-
divisibility by p? of a(y —1) —a(y? — 1) for p = 17,19, 23,29, 31, 37,41, 43,59, 61
and 67. Thus for these primes, J € O[[W]]*, and the assumption of the assertion
(1) of Theorem 6.3 is satisfied. As for p = 53, there are two families of modular
forms, and one of them with @ = —1 mod mo[w); has non-unit

Oa
J = s (W),

In this case, for the cusp form f € S54(T'9(53)) of weight 54 in the family, a(p; f)+
1 is divisible by a square of a prime factor of 53 in the Hecke field of f. Thus in
this case, J is a non-unit, but J # 0 by Proposition 7.1 {see also Remark 7.1).

We now study a bit what we can say about the symmetric power of
2-dimensional representations.

Example 6.2: Let p: § — GL3(J) be a deformation of p for an irreducible closed
subscheme Spec(J) C Spec(R) for R = R?;L(z), 7 of characteristic 0. We suppose
(Alr), (RGF) and (univ) for p and that

(6.4) 7 = Sym®(p) satisfies (Zp) and (RGp).

For a positive integer k, we now put ¢ = Sym*(p): $ — GLg41(J) and decompose
Adsp 1) () = B, @5 for v; = det(p)~7 ® Sym™ (p).

We consider the morphism of algebraic groups s: SL(2) — SL(k + 1) induced
by symmetric k tensors. Then its differential ds: V(Ad(p)) = sl(2) —» sl(k+1) =
V(Adsyk+1)(9)) induces the inclusion of V(y1) into V(Adsy(x+1)(¢)) (which is
unique up to scalar multiple). This map induces

ds. : Sel(Adsy(2)(p)) = Sel(p1) = Sel(Adspk+1)(9))-

We can reformulate the above argument as follows: Write (R', ¢') (resp. (R, 0))
for the universal couple associated to &' = @g’::;:;; 1, (resp. QgL(z), ;) deforming
7 = pmodmy (resp. pmodmy). Since Sym*(g) € ®'(R), we have a unique
morphism oz R’ — R such that ag’ ~ Sym*(p). This induces the following
commutative diagram:

(6.5)

¢ ~ ok Sel™ (i) Fo ' k -
I[Sr* —— O jouny Or 1= Bjar T, g1 Sel*(¢))/F

1 l l

s Sel*(Adsp(z - "
J[SF] —r— ol ®r I T (raman s —w— Sel’ (Adsw(z)(0);

* The author is grateful to Y. Maeda for supplying the above data.
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and the dual o* of a gives an injection of Sel(Adsp(z)(p));L into
Sel(Adgr(k+1)(¢)) /1 such that a* = ds,.

We have a similar result for Adgpx41)(¢) = Q};:O @241 when k =2¢+1 and
Adsor+1)(p) = @§=0 @a;+1 for k = 2£+2. Thus Conjecture 4.2 tells us that the
p-adic L-function Ly(s, ¢;) associated to Sel*(p;),r,, for odd j to have a trivial
zero of order |Sp| at s = 0, but it gives no information on L, (s, ¢;) for even j.

7. Proof of Conjecture 6.2 in the case of multiplicative reduction

Define W, C O;° by
W, ={ye O;! The local Artin symbol [y, p] is trivial on Fio p } .

For each subset ¥ C Sg, writing S = Sp = ¥ U X*, we put

Wy = Clp(p™) x (HWP) x( ] 05) cea.

pED peXe

Let Spec(I) be an irreducible component of Spec(hﬁ) and Spec(J) be the irre-
ducible component of Spec(h"=(p™; 0)) contained in Spec(I). Here A% (p>; 0)
is the Hecke algebra defined in 5.1.

Note that G/Wyx &[], 5 I, for the inertia subgroup I, of T' at p. By (TR),
actually I, =T

We order the prime factors of p in F' as py, pa, - . ., Ps-

PROPOSITION 7.1: Let x: $ — O be a finite order character, and put ¢ = yN.
Let the notation be as in Conjecture 6.2. Suppose that Fo,/F is the cyclotomic
Zp-extension. Suppose that at least one arithmetic point P: J — O is associated
to a p-divisible group of (potentially) multiplicative type at p1,...,ps—1. Then
{til i = 1,...,s} in J are analytically independent over O, and hence J # 0 in
I, where t; = T(w;) — w(T(w;)) for the Teichmiiller character w: J* — pg_1(J)
with q = #(F).

Proof:  We put S; = {pji1,pj42,---,ps} for j = 0,...,5 - 1. We write W;
for Ws, and put G; = G/W; = [, I,,. We write h; for R (p*®; O) and
let Spec(J;) be the (unique) irreducible component of Spec(h": (p°°; ©¥)) inside
Spec(I). We have dimp J; = s — j by construction. Thus we get the following
sequence of surjective algebra homomorphisms (or a stratification of Spec(J)):

(7'1) ‘]IZ.]]()S?.LB”-—)JS_lErO
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and P=rmg0mg_10---0om:J—» O, because Fo, /F is cyclotomic.

By the multiplicative reduction assumption, P(T(z;)) is a root of unity for
i < 5. Thus replacing T(w) and t; by T(w;)* and T(w;)* — w(T(w;)?) for a
suitable integer exponent h > 0, we may assume that P(¢;) = 0 for all i < s.
Then what we need to prove is:

(7.2) The elements {t;| i =1,...,s} in J are analytically independent over O.

For each 1 < j < s — 1, we take a quarternion algebra B;,r such that

(1) B; ®F Fy, for 1 <14 < j is a division algebra;

(2) B;j ®F Fy = M,(F,) for all prime ideals q outside {p;]| i < j};

(3) B;j®r,-Ris adivision algebra at as many embeddings o: F' < R as possible.
For any arithmetic point @ in Spec(J;), the algebra homomorphism Q: J; — @p
is associated to a classical Hilbert modular form fg with fo|T(q) = Q(T(q)) fo-
By our construction, the local component at p; for ¢ < j of the automorphic rep-
resentation spanned by fo is a Steinberg representation, which is a image under
the Jacquet-Langlands—Shimizu correspondence of an automorphic representa-
tion of the algebraic group B;‘/ p Thus Q(t;) = 0 for ¢ < j. Since arithmetic
points are dense in Spec(J;), we conclude 7;(t;) = 0 for i < j:

Jo — I — Ja — oo Jea — T
ty — ty — tg — ooty — g
tsm1 — lg_1 — ts_1 — =ty — 0
tg — to — 0 — ---> 0 — 0
4y, — 0 — 0 — .-->» 0 — 0

On the other hand, ¢; is transcendent over O in I;_; because |Q(T(w;))| =
(=71 n-—1 (the modified Ramanujan bound) for all arithmetic points Q of weight
k = (n,v) factoring through J;, where o: F < Q < Q, induces p;. This can be
shown as follows: The classical Ramanujan bound is given by

QT (w;))] = |a;lz ™ =2~

By definition, we have T(w;) = w; " T(w;). Since Fo/F is cyclotomic, we
know that w; can be chosen in F C Fy; and |w; ™| = ;|2 . This shows the
identity |Q(T(w;))| = |w;|;™ ~!. Again using the fact that Fis/F' is cyclotomic,
we know that there are infinitely many arithmetic points factoring through J;
with distinct n,. Thus by induction, we see t; has infinitely many distinct values
on the closed subscheme defined by the equation t{ =t; =--- =t;_, = 0, and
hence t; is analytically independent over Of[t,t2,...,t;-1]}, which shows the
result. ]
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Remark 7.1: By the result of [BDGP], if Spec(h™°"¢(p®°; O) ) has an arithmetic
point P associated to an elliptic curve E defined over ¥ with multiplicative
reduction at p and if F has only one prime p over p, then with the notation in

Conjecture 6.2,
dT(w,)

PJ) = P(—d—T;—)

(see [GS] Section 2.4) is transcendental over Q and hence P(J) # 0. Thus if
there is only one prime factor of p in F and E,g is minimally modular over
F associated to an irreducible component Spec(I) of Spec(h(p®™®; O)f), J # 0

holds for the projection 7: I — J as long as P € Spec(J) for closed irreducible
Spec(J) C Spec(l).

8. Correction to [H96a]

The assertions (2) and (3) of Theorem 6.3 for F = @ and p-ordinary ¢ was first
claimed in [H96a] using a method different from the one employed here. However,
the proof given in [H96a] contains a gap stemming from a mis-statement of the
assertion of Proposition 1.1 in [H96a]. Although the results in this paper proven
by other methods covers the principal assertion of [H96a], we would like to give
the reader a description of valid assertions of [H96a] and would like to correct
false statements there.

We correct the statements of Proposition 1.1, Theorems 3.2 and 3.3 of [H964a]
and give a corrected proof of them along the line employed in [H96a]. We use the
notation introduced in [H96a]. Here is the corrected statement of Proposition 1.1
in [H96a):

PROPOSITION 8.1: Suppose the surjectivity of 8 and p. Then we have the
following canonical exact sequence of H-modules:

Tory' (B, Ker(p)) = C1(6;T) ®r B — Cy(X; B) = Cy(u; B) — 0.

In [HY6a], the first term of the above exact sequence is written as
Tor] (B, Ker(y)). The proof given in [H96a] gives the correct result without
any change. The mis-statement of this result affects the assertions made at sev-

eral other places of [H96a]. Here is the corrected statement of Theorem 3.2 of
[H96al:

THEOREM 8.2: Suppose (Alg), the conditions of D for p and that [ is a torsion-
free Ao-module of finite type giving the normalization of an irreducible component
of Spec(Rq). Let Selz(Ad(p) ® v~1), be the Pontryagin dual module of the
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Selmer group Selz(Ad(p) ® v1) . We have the following two exact sequences
of I-modules:

Seljy (Ad(p) ® v 1) /0
(v? — 1) Sellq, (Ad(p) @ v=1) g
C1 (o3 Io) ®1o I 3 Seli (Ad(p) @ v 1) /9 = I 0.

I®z,T; 24

= C1(A;51) =0,

Moreover suppose that Rg is reduced and either that Rg is a A-module of
finite type or that Spec(ly) is an irreducible component of Spec(Rg). Then
€; is injective,

In the original version in [H96a], it is claimed that Ker{to) is a pseudo-null
I[[[]}-module, which does not immediately follow from the method employed in
[H96a]. Thus the analysis of Ker(s;) given from the line 10 from the bottom of
page 105 of [H96a] to the line 16 from the bottom of page 106 does not stand as
it is. Removing this part from the proof, we get the corrected assertion.

We also need to correct the assertion of Theorem 3.3 in [H96a]. Here is the
corrected one:

THEOREM 8.3: Suppose (Alg), (Ind), that I is a torsion-free A-module of finite
type giving the normalization of an irreducible component of Spec(Rg) and that
Sel)\y. (Ad(e)) g is a torsion I-module. Then we have

(i) Selis (Ad()) ® v™1)q is a torsion 1[[[']]-module of finite type;

(ii) There is a pseudo-isomorphism of Sel)y (Ad(p)) ® v™1) g into M x I for
a torsion I[[I']]-module M = Cy(X.; 1) such that M/(y — 1)M is a torsion
I-module;

(iii) If Selj(Ad(p));o is a pseudo-null I-module and A’ = 1, then
Sel}(Ad(p)) ® v~ 1) s is pseudo-isomorphic to I, on which T acts trivially;

(iv) Iflg is formally smooth over O, then we have the following exact sequence
of I[[I")]-modules:

0 = C1 (o3 1) = Cr(Nog; T) = Qyjar — 0,

where ﬁﬂ /ar Is the module of continuous 1-differentials or equivalently is the
my-adic completion of Qp/as (which is a torsion I-module of finite type by (Ind)).

Originally M is claimed to be pseudo-isomorphic to C1(7e;lo) ®1, I in the
assertion (ii). This is true if I is formally smooth over O, and in this case, M is
isomorphic to C] (7s0; Ip) @1, I; otherwise, the proof given there does not immedi-
ately show the pseudo-isomorphism. The two arguments given after Theorem 3.3
in [H96a] proving the control of C;(X};I) and the I[[T']}-torsion-ness of C1(Ay;T)
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are correct. However, the argument from the line 19 of page 109 of [H96a] to the
line 3 from the bottom of the same page, relating C1(A ;1) and Cy(7e0;I) ®y, 1
up to I[[T']}-pseudo null modules, is incorrect. The result holds when I is formally

smooth as later proved in [H96a] pages 112-113. To recover the result (ii), we
need to show that

02Y - Ci(Aoo;I) > C1(V ;1) = 0
is exact for an I[[T']]-torsion module Y. This can be done as follows: Note that
Cl()\;; I ﬁRj/A; ®r; I and Cl(Aj;]i) &~ ﬁgj/Aj ®r, L.

We have by definition Ay & O and AL, = O[[X]] by (Ind) of [H96a] page 107.
Then the exact sequence:

I QD[[X]]/D Bo[x]) I— ﬁRoo/Aoo ®p, 11— ﬁRoo/Af,o ®r 1—0

shows that Y is the image of I, which is a torsion I[[[]]-module. In this way, we
can recover the assertion of Theorem 3.3 in [H96a] as stated above.
Here we list minor mistakes and misprints in [H96a}:

page 92 (Ext2): Tor? ’ should read Torfl for"=T®4 B

page 100 line 6: T=Rp®p I should read T = Rp ®x, I

page 105 (Ext5-6): Tor)’ should read  Torl*

page 116 lines 13:  c(h7)c(7) should read  ¢(h7) = m(h)c(7)

page 127 Proposition A.2.3: Remove R’é’ord from the statement.
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